
AD-A144 125 COMPEHIENSIVE OCCUPATIONAL DATA ANALYSIS PROGRAMS 80 'i
(CODAP8OI USES MANUAtfUD NAVY OCCUPATIONAL
DEVELOPMENT AND ANALYSIS CENTER VASHINGTON DC JAN 84

UNCLASSIFIED 000/OF84/DNA F/G 92 NL

1.0 11.68

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS - 19,3 -

|

,1

In
N

NA NALTECHNICAL
INFORMATION SERVICE

21~~g

30272-101
REPORT DOCUMENTATION .REPoWR NO. L :l,-f A NO.

PAGE DOD/DF-84/006a ,4- (
4. Title and Subtitle L magnet Da e

COMPREVENSIVE OCCUPATIONAL DATA ANALYSIS PROGRAMS 80 (CODAP80) JANUARY 1984
Uer s Manual

7. Author(s) L. pt, t wis ONapetion ft.p No.

N/A
9. Performing Oganization Name and Address 10. Prole/TallikWee* UMN N.
NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC)
BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA) 3. o or N
WASHINGTON, DC 20374 (C) N/A

(a) N/A

12. Sponsoring Organizatio Name and Address I. Type of Report & Peried Covered

NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC) FINAL RELEASE 83.1
BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA)
WASHINGTON, DC 20374 14.

15. Supplemntary Notes

SOURCE CODE FOR CODAP80 PROGRAMS.

for magnetic tape see
14l Abstract (Limit: 200 words)

\ CODAP80 is an enhanced IBM version of the Comprehensive Occupational Data

Analysis Programs. The software system is used to process occupational information
and includes programs that range from data entry to statistical analysis. CODAP80
is based on a database management concept which allows the job analyst more versatility
in analysis than its predecessor. Included with the system are four manuals: the
CODAP80 User's Manual, Job Analysis Manual, Systems Manual, and Executive Summary.i

17. Document Anelyims a. Desuiptore

b. identW4M1siOpen-Ended Terms

a. COGATI FleldIGroup

tl. ItmmSeendkipot Oaae ((We Nageul) U. Ne.*- a ges,

UNCLASSIFIED 192
RELEASE UNLIMITED 2r. 1 0 (nTI PA1

UNCLASSIFIED

(Pmrsa N""s-a. ll l-I~l~tl I b pauIl eant e~l inwnree4.

, llu~noM CumoD

I' -____ ____ ___

- -- -- -~--- -

PA"m: 84/006a 5, -(,0 i
4. TH IkdmS. lbne ISCOMlPREHENS IVE OCCUPATIONAL DATA ANALYSIS PROGRAMS 80 (CODAP80) JAUARY 1984

User s Manua

7. Auw, s) L. ftmb. Ouumwbia UP. ft.

N/A
9. P,*O'4S Oq..,. Nan @ad A be AiWnVAF&* unit to&
NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC)
BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA) I. Cafmtwbuorar&*W &

WASHINGTON, DC 20374 (N/A

N/A

IL spotift~i Orgntam uNme .in Auu IS. T" of 080"t a Pwtui Cows

NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC) FINAL RELEASE 83.1

BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA)

WASHINGTON, DC 20374

ILSUuppkmrwfry Raft

SOURCE CODE FOR CODAP80 PROGRAMS.

for magnetic tape see

1. Ab~ (,h: 2W wo)

,- CODAP80 is an enhanced IBM version of the Comprehensive Occupational Data

Analysis Programs. The software system is used to process occupational information

and includes programs that range from data entry to statistical analysis. CODAP80

is based on a database management concept which allows the job analyst more versatility

in analysis than its predecessor. Included with the system are four manuals: the

CODAP80 User's Manual, Job Analysis Manual, Systems Manual, and Executive Summary.i

1'!

17. Oscumeft Afilyuls a. mft

b. Ideamtif/OpwniEndai Torms

C. COATS FWd/romp

I& Avaiabl lty ttaam . 2L @w Sm Me 8 2L W 1W goo"

UNCLASSIFIED 192 1
RELEASE UNLIMITED 2L e or oh (2L d

UNCLASSIFIED
(Sm ANSI. 18) bmanh M so *a panSM W (447M

* '.. -s - f

4 .- ,r t', . ' ~ * *%~.

4FOREWORD

The Comprehensive Occupational Data Analysis Programs (CODAP), a soft-
ware package developed by the United States Air Force, is in use by all the
United States militAry services and numerous other agencies throughout the
world. Of the two predominant versions of CODAP, the IBM 'version has not
kept pace with the continuing development of the UNIVAC version.

In 1978 the Navy Occupational Development and Analysis Center, a
detachment of the Naval Military Personnel Command, and serving as Executive
Agent for Joint Task Analysis Support for the Department of Defense, initi-
ated a project to develop an enhanced IBM version of CODAP which would be
less machine dependent than the existing IBM version, easy for non-program-
mers to learn and use, and which would provide the capability to implement
new analysis approa.hes for. analyzing occupational data. The funding for
this project was provided by the United States Navy, Marine Corps, and Coast
Guard.

As a result of this project, CODAP80. an enhanced version of IBM CODAP,
was developed by Texas A&M University. This manual is one of four CODAP80
manuals which were developed to accompany the CODAP8O system. The four
manuals are the CODAPSO Executive Summary, the Job Analysis Manual, the
User's Manuel, and the Systems Manual.

ti

__!

•:>..

TABLE OF CONTENITS

Page

GENERAL INFORMATION...........

hDATABASE CREATION 2

INPSTD and OGROUP File Initialization 3
LNPSTD7

OGROUP. 18
REARNG and INTERPRETER File Initialization 22
REARNG. 25

THE CODAP80 INTERPRETER 27

Principles of the CODAP8O Language. 28
Execution JCL for the CODAP8O Interpreter. 31
CODAP8O Reserved Words 32
The Sample Database. 33
ADDATA. 35

KSyntax Graph 43
A VALUE. 44

Syntax Graph. 52
BEGIN. 53

Syntax Graph 56
CLUSTER. 57

Syntax Graph 63
COPY 64

Syntax Graph 70
CORR. 71

Syntax Graph 76
C REATE 77

Syntax Graph 83
DESCRIBE 84

Syntax Graph 91
END............. 92

INPUT.... 96
Syntax Graph 101

PRINT 102
Syntax Graph 118

RANDOM 119
Syntax Graph 123

RELY. 124
Syntax Graph.... 131

REPORT o. b 132
Syntax Graph. 138

SELECT139

Syntax Graph 147
STANDARDo.. 148

Syntax Graph 155
VARSUM o oo..156

Syntax Graph o.. 187

CODAPSO

GENERAL INTRODUCTION

CODAPQO is a. software system for processing occupational .information.
The system includes programs for basic data entry and statistical analysis.
CODAP80 was designed with the particular needs of the job analyst in mind.
As such, much of the system's terminology is oriented toward them. Users of
CODAPSO will find, though, that the general data handling and analysis
features of the system will allow any database to be processed that can be
conceptualized in the form of a two-dimensional matrix.

ORGANIZATION OF
THE USER'S MANUAL

c ---. The User's Manual consists of two major sections: a section detailing
the creation of a CODAPSO database and a section illustrating the use of the
CODAPSO interpreter to process and display the information residing on the

database. The database creation section of the manual will focus on the
routines required to generate the database (INPSTD, OGROUP and REARNG), dis-
cuss file initialization and space requirements, detail the database crea-
tion routines' control specifications and provide a sample set of data in
which to illustrate the process of constructing a CODAPS0 database. The
interpreter section of the users manual will explain the use of the CODAP80

language in processing an occupational database. The function and charac-
teristics of each of the interpreter procedures will be outlined, with exam-
ples provided to facilitate understanding.

CODAPSO RELEASE

The specifications appearing in this manual apply to release 83.1 of
the CODAP80 occupational analysis computer system.

EXAMPLE JCL
SETUPS

The example Job Control Language setups that appear in the manual con-
form to those found in Brown (1977). They should be compatible with the JCL
specifications of any IBM OS operating system.

CODAP90
DATABASE CREATION

INTRODUCTION

Database creation consists of three steps: two of which are mandatory
and one that is optional. The three steps are (in order):

1) INPSTD (Input Standard)
2) OGROUP (Overlap Group)
3) REARNG (Rearrange)

INPSTD

The INPSTD database creation routine builds the initial incumbent data-
base. Raw time spent ratings are relativized to a 100 point scale and his-
tory, task and secondary remarks are processed and saved. INPSTD is a
mandatory step in database creation.

't OGROUP

The OGROUP database creation routine performs a hierarchical clustering

of incwnbents measured on their time spent on tasks. It is the main clus-
tering routine in the CODAPSO system. OGROUP is an optional step in data-
base creation.

REARNG

The REARNG database creation routine prepares the initial database for
use by the CODAPSO interpreter. REARNG is a mandatory step in database
creation.

SAMPLE DATA

A sample set of data (consisting of seven incumbents measured on four
history, five task and five secondary variables) is provided to illustrate
the steps in database creation. The amount of information contained in the
sample set of data is small enough to allow the user to trace, by hand, the
computations associated with the different. steps involved in the creation of
a CODAP8O database.

FILE INITIALIZATION

Before the INPSTD and OGROUP database creation routines can be run, it
is necessary to initialize the file space required for their execution. A
simple FORTRAN program (named INITIALI) is provided to accomplish this.
After INPSTD and OGROUP have been executed, another FORTRAN program
(named INITIALW) is provided to initialize the file space required to
execute the REARNG database creation routine and the CODAP0 interpreter.

2

t~VIV-

P
INPSTD AND OGROUP
FILE INITIALIZATION

INTRODUCTION

There are six files that must be initialized' before the INPSTD and
OGROUP database creation routines may be run. These six files are:

1) INPFILE
2) VARCOM
3) SYMTABI
4) GRPFILE
5) GRPHSN
6) DECODE

Initialization of these six files is accomplished by the INITIALI pro-
gram. INITIALl serves to create the necessary fies, and provide them with
enough space to allow INPSTD and OGROUP to execute properly.

INITIAL1

Each of the above files requires a space allocation. How much space
depends on the file. The amount of space required is determined by the
number of records that are written to the file. The number of records that
are written is a function of the amount of the various kinds of information
being input. The number of records a .file should have initialized is calcu-
lated using the following equations. The number of records per track quoted
assumes IBM 3350 compatible disk drives. The basic reference used is Brown
(1977).

INPFILE

Records = NINC * CEIL((NHIST + NTASK + NSEC + 2)/900)
5 Records per Track

VARCOM

Records - (NHIST + NTASK + NSEC) +
(Potential # of Created Rows or Columns)

45 Records per Track

SYMTAB1

Records = Always set at 31

C

INITIALM

GRPFILE

Records = 5 + FLOOR NINC 2 + FLOORNINC - 2+ FLOORNINC 1

1 Record per Track 810 3240 540

GRPHSN

Records = CEIL(NINC/10)
86 Records per Track

DECODE

Records = 1 + # Different Ranges + CEIL(# Different Ranges/100)
140 Records per Track

In the above equations the different parameters are interpreted in the
following way:

FLOOR: Largest ipteger <= Argument.

Example: FLOOR(6.1) = 6 FLOORC9) = 9

CEIL: Smallest integer >= Argument.
Example: CEIL(6.1) = 7 CEIL(9) = 9

NINC: Number of Incumbents in the study.

NHIST: Number of history variables.

NTASK: Number of task variables.

NSEC: Number of secondary variables.

The DECODE file equation is concerned with the "# Different Ranges."
For example, the following decode titles have 7 different ranges:

H15 IfYES; 2=NO;
H16 IfLO; 2=MED; 3=HI;

H10-H20 1=HOT; 2=COLD;

INITIAL1
EXECUTION SETUP

On the following pages is the JCL setup and FORTRAN source code for
executing the INITIAL1 routine. The procedure referenced on the "// EXEC"
card (FG) Is the procedure library name for the FORTRAN G1 compile, load and
go procedure. The setup for FG can be found in Appendix C.

9M,10atc ' c.. -,opy.

4

-, -. ILA'

INITIALl

fNTI~
JCL SETUP FOR INITL FORTRAN PROGRAM

1 INITIALl .iCL SETUP.
//SAAPLEDATA6O DATA.

IIEXEC FG,REGION.256K
//FTO2Fo01 DW OS~oNPPI LE,D4 SP-(NEW,CAThG) ,UNI T-SYSDA,

// DC9.(DSORGwOA)SPACE(36OO,(7))
//TIOFOOI DO DSNoVARCOM, I SP.(NEW,CATLG) ,UNI T.SYSDA,

// OCB.(DSORG-DA),SPACE(244,(50))
//FT12?OO; DO DSNSYMTASl,DISP-(NEW,CATIG), UNIT-SYSDA,

/1 DCB.(DS0RG-OA) ,SPACE.(52,(3 1))//FT5FOO1 WO DSNiGRPFILE,DISP.(NEW,CAkTLG),UNIT.5YSDA,
// OCs.(SOARG.A),SPCEw(1296O,(5))

//FT16FOOW DD DSN.GWNSN,DISP.CNEW,CATLG) ,UNITsSYSDA,
II OCS.w(DSORG.DA),SPACE.(4O,(I))//FT17FOOt 00 OSN-OECO E.DISP.CNmE.,CTLG) .UNIT=SYSDA,// DC8=DS0RG-A),SPACEm(12O,(7))

//SOURCE DO *

***INITIALI FORTRAN SOURCE STATEMENTS

//SYSIN DO'

INITIALl

INITIALI
PROGRAM TO INTIALIZE THE OGROUP AND INPSTD FILES

C INITIALI FORTRAN PROGRN4. C
C PROGRPN TO INITIALIZE THE FILES NECESSARY TO C
C EXECUTE THE INPSTD AND OGRO P DATABASE CREATION C
C ROUTINES. - SAMPLEDATABO DATA. C

REAL INPFIL(900), VARCOa4(61), SY4TI1(13), GRPFIL(3240),
+ GRPHSN(1O), DECOOE(30)
DEFINE FILE 2 (7, 900,UIREC)
DEFINE FILE 10 (50, 61,U,IREC)
DEFINE FILE 12 (31, 13,U,IREC)
DFFINE FILE 15 (5, 3240,U,IREC)
DEFINE FILE 16 (I, I0,U,IREC)
DEFINE FILE 17 (7, 30,UIREC)

C
C WRITE INITIALIZATION RECORDS TO INPFILE (FTO2)

0

00 10 K0,1,900
10 INPIIL(K}aJ

IRECwJ
20 WRITE C 2'IREC) INPFIL

C WRITE INITIALIZATION RECORDS TO VARCOM CFTIO)
C

DO 40 JI,50
DO 30 K1,61

30 VARCON(K)=J
IRECJ

40 WRITE (10' IREC) VARCOM
CC • WRITIE INITIALIZATIONI RECORDS TO SYNTABI (FT12)

O 60 Jul,31
DO 50 K%1,13

50 SYMTI(K)AJ
IRECmJ

60 WRITE (12' IREC) SYMTBI
C

I
i

C WRITE INITIALIZATION RECORDS TO GWPFILE (FT151

DO 60 J-1,5
D0 70 K-1,3240I 70 GRPFIL(K)vtJ
I RECmJ

0 WRITE (15 IREC) GRPFIL

C RITE INITIALIZATION RECORDS TO GRP14SN (FT16)
C

00 100 ju'I,1
00 90 K1I,1O

90 GRP'SNC(K)J
IRECwJ

100 WRITE (16 IREC) GNSN

C WRITE INITIALIZATION RECORDS TO DECODE (FT17)
C-

DO 120 J.1,.7
O 110 K01,30

110 OECOE(K) wJ
IRECJ

120 IMITE (17'IREC) DECODE
STOP

6

FF-

INPSTD

INTRODUCTION

INPSTD is the- first step in the creation of a CODAP80 database. This
step is characterized by the assignment of a database or study identifica-
tion designation, variable (history, task and secondary) remark and decode
title specifications and, in card image form, raw incumbent data. INPSTD
consists of five sections:

1) Database Parameter Specification
2) Format Fields Specification
3) Variable Remark Specification
4) Decode Title Specification
5) Incumbent Data

DATABASE PARAMETER
SPECIFICATION

The database parameter specification provides the INPSTD routine with

information pertaining to the size of the study to be processed. The data-
base parameter specifications are made on a single card requesting the fol-
lowing information:

CARD
COLUMNS

1-12 Database (or Study ID). The ID must be left jus-
tified, may only begin with a letter or underscore,
contain no imbedded blanks and must consist of no
characters other than A-Z, 0-9 and the underscore.
The ID may be from 1 to 12 characters long.

13-17 Number of incumbents to be stored on the databaseI, (maximum of 20,000).

18-20 Number of data cards for each incumbent (maximum

of 455).

21-24 Number of history (H) or background variables.

25-28 Number of task (T) variables.

29-32 Number of secondary (S) variables.

33-33 Incumbent data print indicator. If blank, incum-
bent data will not be printed. Any character other
than a blank will cause data to be printed.

35-35 Put a "1" to suppress default relativization of
task data.

7

S_7 -I

INPSTD

36-36 Put a "1" to suppress default error check of
non-filled data. If the user has placed a "1" in
column 36, data will be interpreted as follows:

Assume that age of incumbent is specified on the
format field as a two digit response (H.). An age
designation of 216 (the number 2 followed by a
blank) will be interpreted as 20. If column 36 is
left blank, data designations that are not right
justified will stop processing with an error.

37-37 Put a "1" to suppress printing of error messages
caused by non-filled data (only valid if column 36
is a "1").

The maximum number of incumbents that INPSTD can process is 20,000.
The maximum number of history, task and secondary variables Is 5,000. These
5,000 variables may be comprised of any combination of history, task or
secondary responses.

(iIt is not required that three types of variable responses occur in the
data of an occupational investigation. An investigation may entirely
consist of history responses only, or for that matter, may entirely consist
of task or secondary responses. There will be a difference, though, in the
way INPSTD interprets the various types of responses. Task responses will
be relativized to a 0-100 point scale, while history and secondary responses
*iI1 be stored in exactly the form in which they were input. In addition, a
blank field input as a task response will be interpreted as a zero, while
blank fields input as history or secondary responses will be interpreted by
the system as being missing values.

FORMAT FIELDS
SPECIFICATION

Format fields consist of H, T and S designations respectively associ-
ated with the data type response made by the incumbent. An H field designa-
tion indicates that the associated data response from the incumbent repre-
sents a history variable. A T field designation represents a task response
and a S field designation represents a secondary response. If a data field
consists of more than one digit, the length of the field is expressed by
continuing the H, T or S designation with periods (.). For example, assume
an incumbent's responses consisted of the following:

CARD COLUMNS DATA TYPE

Incumbent ID 1-2 History
Age 3-4 History
Sex 5-5 History
Task 1 6-6 Task
Task 2 7-7 Task
Task 3 8-8 Task !

INPSTD

The format field that would designate such data would look like this:

Column I

H.H.HTTT

The maximum length of a data field is seven digits. The maximum number
of format field specification cards is 455 (this would allow the specifica-
tion of up to 5,000 seven digit fields). Format field specifications may
not be continued across card image boundaries. The format fields specifica-
tion cards are followed by a card containing an ,W' delimiter in columns
1-2.

VARIABLE REMARK
SPECIFICATION

A variable remark specification is a user supplied description or defi-
nition explaining the purpose or function of an associated data item. Vari-
able remarks are stored by INPSTD for later reference by the CODAP80 inter-
preter.

For every H, T or S field denoted in the format fields specification,
there must be an associated variable remark specification. For instance, if
five task fields were indicated in the format fields specification, then
five task variable remark specifications must be present.

The form of a variable remark is:

1) Variable type indication (H, T or S).
2) Digit (an integer number appended to the varible type

indication).
3) Assignment operator (the symbol '').
4) Variable remark (user supplied text describing the

associated variable).
5) Variable remarks are terminated by a semicolon (the1I symbol 0;').

Variable remark specifications are made to the INPSTD database creation
routine by placing the variable type indication in column 1, the digit
identifying the history, task or secondary response in columns 2-5
(left-justified), the assignment operator in column 6 and the variable
remark in columns 7-66. For example, assume the eighth task in an inventory
read:

ESTABLISH STANDAROS OF TIINLOGY AND D(CL MENTATION
IN WRITI N& FORTRAN OWUTIR PQROGRMS.

The user, though, desires that the eighth task be printed-out by the
CODAPSO Interpreter as:

ESTABLISH STAMOS OF T ,MNLOGY AM DOCUMENTATION IN .C. WRITING FORTRAN COM" POSANS.

D9

INPSTD

To achieve this output format, the eighth task would need to be for-
matted at INPSTD time in the following way:

CARD COLUMNS
1 2 3 4 5 6 7 8

-, 12345678901234567890123456789012345678901234567890123456789012345678901234567890

T8 -ESTABLISH STANDARDS OF TERMINOLOGY AND OOCUMENTATION IN
WRITING FORTRAN COMPUTER PROGRAMS.;

Variable remarks may consist of up to 240 characters. Immediately fol-
lowing the assignment operator (in column 6) is the first of the allowed 240
characters. INPSTD scans each character between columns 7-67 in search of a
semi-colon. If no semi-colon is found, INPSTD skips to the next card and
continues scanning columns 7-67 until it finds .one. If, after having
scanned columns 7-67 for four cards, a semi-colon has still not been found,
INPSTD will signal an error that the variable remark is more than 240 char-
acters long (columns 7-66 equal 60 characters -- four of these would equal
240 characters). Blanks in columns 7-66 are considered valid characters.
The following example remark would be interpreted by INPSTD as having 240
characters:

- CARD COLUMNS

1 2 3 4 5 6 7 8
> 1234567890123456789012345678901234567890123456780123456769012345678901234567890

240 CHARACTER VARIABLE
-R84ARK

Variable remark specifications must be input in the following order:

All history variable remarks.
All task variable remarks.
All secondary variable remarks.

The fact that variable remark specifications must occur in a specific
order does not mean that the Incumbent data must be in this order also.
Incumbent da'i may be organized in any fashion the user desires. The
numeric digits appended to the variable type indicator (H, T or S) must be
in ascending sequence from 1 to n with no ommissions. Semicolons are used
by INPSTD to delimit the end of a remark. They should not be used in the
text of a remark. The variable remark specifications are followed by a card
containing an ' delimiter in columns 1-2.

DECODE TITLE
SPECIFICATION

Decode title specifications are useful for enhancing the readability of
reports by decoding abstract number classifications into understandable
English. Many variables are coded '0ayes' and 'lano or are responded to
with an even greater range of classifications. Decoding the value response
classifications of a variable at INPSTD time will, in the case of the
CODAPSO VARSUM procedure, make for a more interpretable report.

10

I'p
,

tt
INPSTD

The form of a decode title specification is as follows:

VARIABLE ID
OR DECODE VALUE = DECODE TITLE;

VARIABLE RANGE

A variable ID is the letter H. T or S followed by 1-4 digits. A vari-
able range is two variable IDs with a dash in between them. There may be
only 0-5 blanks on each side of the dash. The two variable IDs must be the
same type (have the same beginning letter) and the numeric portion of the
first variable ID must be less than that of the second variable ID. For
example, H10 - H8 is an invalid variable range. The decode title begins
with the character immediately after the '1= and ends with the character
immediately preceding the ';'. Decode titles can be from 1-32 characters.
If another decode title is to be specified for the same variable ID or vari-
able range, it may be done by following the*semicolon with:

DECODE VALUE = DECODE TITLE;

As many of these as needed may be specified for a particular variable.
For example, the following is valid:

HS-H10 1=THE TITLE FOR DECODE VALUE 1;
2=THE TITLE FOR DECODE VALUE 2;
7ffTHE TITLE FOR DECODE VALUE 7;

Notice that each successive decode value must be greater than the
previous one for the same variable. Variable IDs must be in ascending order
and decode values must be in ascending order within variable IDa or variable
ranges. The above example indicates that whenever one of the variables H5.
H6, H7, H8, Hg, or H10 has a value of 1. the associated meaning of that
value is the decode title (in this case, it is 'THE TITLE FOR DECODE
VALUE 1'). The same holds true for decode values 2 and 7.

The variable decode specifications are followed by a card containing an
'W delimiter in columns 1-2.I
CONTROL

The four INPSTD sections discussed above make-up the control portion of
the routine. A sample set of incumbent Information has been prepared to
guide the user through this manual. The information consists of seven
incumbents, each measured on four history, five task and five secondary
indicies. Using this sample information, the control setup of the INPSTD
routine would be as shown on the following page.

11

A. "-' .-. -.-. . . .

INPSTD

CONTROL
SETUP

CARD COLLONS
S1 2 3 4 5 6 7 8

- 123456789012.34567890123456789012345678901234567890123456789012 4567S90123456789O

S MPLEDATMAOOOO70000004000YSOSY
H14H.H ITSTSTSTSTS
of
HI -SEX;
W2 -AGE;
H3 -YEARS 04 JOB;
H4 sINCUBEIT I;
TI aSWVDUE VIOLENT IIATES;
T2 -SHAKE DON0 INMATES;
T3 -SHAKE DOWN VISITORS;
T4 -ESCORT I NATES;
TSJ =TESTIFY IN COURT;

* I -SECONDARY - SUOUE VIOLENT INMATES;
S2 -SECONDARY - SHAKE OWN~ INMATES;
S3 ,,SECONDNRY - SHAKE OWtN VISITORS;
S4 -SECONDARY - ESCORT INMATES;

5 =SECONDARY - TESTIFY IN COURT;

H1 IMALE; 2,FEMALE;
SI-$5 I-0; 2-ASSIST; 3wSUPERVISE;

INCUMBENT
DATA

Each incumbent's data may consist of up to 455 cards. All 80 charac-
ters of a card may contain data. The maximum length of a data field is
seven characters. The maximum number of variable responses from an incum-
bent is 5,000. The maximum number of incumbents is 20,000. Data fields may
not span across cards. All data from an incumbent must be numeric. If
potential task information was indicated on the database parameter specifi-
cation card and an incumbent has no nonzero task information, then that
incumbent is not included in the database.

DATA

The fifth INPSTD section discussed above constitutes the data portion
of the routine. Using the sample information, the data portiono INPSTD
would be as follows:

C CARD COLuMNII

1 2 3 4 5 6 7 8
-: 1234678901234"567890 123456789012345678901234567890123456789012345678901234567890

219 117 1111220
14119212420 2221
1 1630 33430 0
127 344 41310 63
123 251 f122510
15330642710 0 0)
2 1170 0 225231

12

INPSTD

INPSTD
EXECUTION SETUP

The JCL setup necessary to execute the INPSTD database creation routine
may be found on the following page. Printed output generated from INPSTD is
displayed also.

13

A~~~ A ~-
-' I.- -.w-, I 1*1

F
INPSTD

[NPSTD

EXECUTION JCL FOR INPSTD DATABASE CREATION ROUTINE

//' JCL SETUP TO EXECUTE THE INPSTO DATABASE CREATION *
*/I' ROUTINE. INPSTD IS STORED AS A MEMBER IN POS LOAD *
// M NOOULE CODAPSO.

1/ EXEC PGQ4INPSTD,REGIONm512K
//STEPLIB DO OSNtmOAP60,DISP.SHR
//FT02FOO1 DO OSN-INPFILEOISP-OLD
//FTO3FOO1 00 DSN.CONTROL,DISP-OLD
//FTO4FOOl DO OSN.DATA.DISPOOLD.
//FTO6FO01 DO SYSOUT-A
/FTOFOOI DO DSNMVARCOM,OISPOLD
//FT2FOOI DO OSNwSYMTA8I,OISP-OLD
//FT17FOOI 00 DSNmOECOOEDISP.OLD
//FT29FO01 00 0SNo"TP13.UNIT"SYSOA,DISP(NEW,OELETE),
// OcS.(RECFPNFLRECL48,8LKSIZE-48),
II SPACE-(46,(5000, I))

CONTENTS OF DSN-CONTROL

SAIWLeDATA8OOO0070lOOO400O50OOY
,Htt. H.H TSTSTSTSTS

HI1 *SEX;
H2 -AGE;
H3 mYEARS ON JOB;
H4 ,mINCUMBENT ID;
TI *SUIUE VIOLENT INMATES;
T2 SHNAKE DOWN INMATES;
T3 -SHAKE DOWN VISITORS;
T4 ,ESCORT INMATES;
T5 'TESTIFY IN COURT;
SI -SECONDARY - SUBDUE VIOLENT INMATES;
S2 wSECONQARY - SHAKE DOWN I IATES;
S3 -SECONDARY - SHAKE DOWN VISITORS;
4 -SECONDARY - ESCORT INMATES;

S5 -SECONDARY - TESTIFY IN COURT;of

HI 1.MALE; 2wFEMALE;
Sl-S5 1O0; 2uASSIST; 3sSUPERVISE;
06

CONTENTS OF DSNDATA

219 117"1111220
14119212420 2221
I 1630 33430 0
127 344 41310 63
123 251 1122510
15330642710 0 0
2 1170 0 225231

14

LI;

INPSTb
INNPSTD

pRitNTED OUTPUT

"15

INPSTD

INPSTD

PRnTD OUTPUT
(continued)

Si s : i
V V V V V V V

140

04

0 0 1 on

AA

AlN - N 6 I =9 % N9

!!!!!!

16

!N

INPSTD

INPSTD
PRINTED OUTPUT
(continued)

I NPSTD SL4ARY

- STUDY 10 USAMLEDATASO

- NUMBER OF INCUMBENTS SPECIFIED - 7

-> NUMBER OF DATA CARDS PER INCUMBENT , I

SNUMBER OF HI STORY ROW VAR I ABLES - 4

-> NUMBER OF TASK ROW VARIABLES - 5

) MBER OF SECONDARY ROW VARIABLES 5 S

-> NUMBER OF DECODE TITLE RECORDS * 7

- UMBER OF TASK & SECONDARY RESPONSES * 43

SNIJUBER OF DELETED INC-DATA RECORDS 0

N UMER OF INCUMBENTS IN THE STUDY - 7

RUN WAS SUCCESSFUL e

17

_ _ _ _ _ _

... -' , -

OGROUP

INTRODUCTION

OGROUP is the main clustering routine in the CODAPS0 computer system.
The routine performs a hierarchical clustering (based on Ward, 1963) of
incumbents measured on tasks. OGROUP is an optional step in database
creation. If clustering is desired, then OGROUP should be run immediately
after INPSTD and before REARNG. OGROUP consists of two sections:

1) Parameter Specification
2) Title Specification

PARAMETER
SPECIFICATION

The parameter specifications for the OGROUP routine are made on a
single card requesting the following information:

CARD
COLUMNS

1-12 Study ID.

14-14 Overlap equation number (see Appendix B for formulae).

1=Absolute overlap
2=Dtstance
3=Distance squared
4=Binary

22-22 Overlap matrix print indication.

YfPrint overlap matrix.

24-24 Cluster indication.
Y=Do clustering
N=Clustering has been performed

26-26 Membership report indication.

YfPrint a group membership report

27-27 Diagram report indication.

YfiPrint a diagram report

32-36 Minimum group membership for diagram.

18

__ .-----

OGROUP

TITLE
SPECIFICATION

The title specification Is made on the card immediately following the
parameter specifications.

CARD
COLUMNS

1-72 Report title.

OGROUP
INPUT SETUP

The parameter and title spdcifications, for clustering the incumbents
associated with the sample data are displayed below. The user has opted to
use absolute overlap as the similarity formula, has indicated that cluster-
ing is to be performed.* a group membership report is to be made and a dia-
gram report is to be generated with a minimum starter group membership of

2. R COUN

1 2 3 4 5 6 8
-,1234567a901234567890234567890123456769023456789012345678902345676901234567890

SAPLDATABO 1 Y YY 2
CLUSTERING INCMINXTS - SAMPLE OATAMAE - N-7 - TASKSS5

OGROUP RESOURCE
CONSIDERATIONS

There is, theoretically, no limit to the number of incumbents that may
be clustered with OGROUP. The user should keep in mind, though, that the
time it takes to run OGROUP is a function of the number of tasks multiplied

by the square of the number of incumbents.I. OGROUP
EXECUTION SITUP

The setup necessary to execute the OGROUP database creation routine may
be found on the following page. Output generated from OGROUPS's execution
Is displayed also.

19

_ _ _ _ _ _ __v

OGROUP

OGROUP
EXECUTION JCL FOR OGROUP DATABASE CREATION ROUTINE

/ JCL SETIP TO EXECUTE THE OGROUP DATABASE CREATION *
//* ROUTINE. OGROUP IS STORED AS A ME4ER IN POS LOAD *
// MODULE COAPSO. 0

// EXEC Pg4-0GROUP,REGION-512K
//STEPLIB O DSN-COO APSODISP"SHR
//FT02FO01 00 OSN.INPFILE,DISP"OLD
//FTO5FO01 DO DONN4E"SYSIN
//FTO6FO01 DD SYSOUT.A
//FTI2F001 DO DSN.SYTA1,DISP-OLD
//FT151001 O DSRPFILE,DISPJOLD
//FT6FO01 DO DSN.GRPSN,DISPOLD
//FT21FOO DO OSN-.UtP IUNITSYSDA,DISP,(NEWDELETE),
// DC..(RECFMF.LRECL- 12960,SLKSIZE- 12960),
// SPACE-(12960,(4000,1))
//SYSIN DO 0
SNPLEDATASO I Y YY 2
CLUSTERING INCUMBENTS - SA4PLE DATABASE - -7 TASKS-5

SCRATCH FILE
CALCULATION

Temporary scratch file FT21FOO1 in the above JCL setup will request
4000 records, each 12960 bytes long. This would allow up to 3350 incumbents
to be clustered, each measured on up to 1000 tasks (the file would need 3926
records). This amount of scratch space is not always necessary. To calcu-
late the amount of space needed, use the following equation:

Records = 12 + FLOOR(NINC/1620) + FLOOR((NINC-1)/1568)
+ FLOOR((NINC-2)/1080) + FLOOR((NINC-2)/810)
+ FLOOR((NINC*NTASK)/1620) + FLOOR((NINC-)/540)
* (1 + FLOOR((NINC-1)/56))**2
- (FLOOR((NINC-1)/56) * (1 + FLOOR((NINC-1)/56)))/2

In the above equation the different parameters are interpreted in the
following way:

FLOOR: Largest integer <= Argument.
Example: FLOOR(2.1) = 2 FLOOR(3)

NINC: Number of incumbents in the study.

NTASK: Number of task variables.

If the number of records in FT21FOO1 needs to be increased or decreased,
check with your CODAPS0 installation representative.

20

OGROUP

OGROUP
PRINTED OUTPUT

00 -0 %n CN

kii

U,
n4 V0 Iw g% N'

Vi

Ifa
SM ~ 00N0 21

mI

INITIAL2

CARDFILE

The CARDFILE is a card image sequential file. INITIAL2 will initialize
it with one record. It is used by the CODAP80 interpreter procedure COPY.
To determine the number of records that will be written to CARDFILE the user
is referred to the discussion of the COPY procedure.

In the equations on the previous page the different parameters are
interpreted in the following way:

CEIL: Smallest integer >= Argument.
Example: CEIL(6.1) = 7 CEIL=9) 9

NINC: Number of incumbents in the study.

NHIST: Number of history variables.

NTASK: Number of task variables.

NSEC: Number of secondary variables.

INITIAL2
EXECUTION SETUP

On the following page is the JCL setup and FORTRAN source code for
executing the INITIAL2 routine. The procedure referenced on the "/I EXEC"
card (FG) is the procedure library name for the FORTRAN G1 compile, load and
go procedure. The setup for FG can be found in Appendix C.

23
/3,

REARNG AND INTERPRETER
FILE INITIALIZATION

INTRODUCTION

Following the execution of INPSTD and OGROUP, four files must be
initialized before the REARNG database creation routine and the CODAP80
interpreter may be run. These four files are:

1) DATABASE
2) CREATED
3) SYMTAB2
4) CARDFILE

Initializption of these four files is accomplished by the INITIAL2
program.

INITIAI2

Each of the above files requires a space allocation. The amount of
space to be allocated is a function of the number of records that need to be
written to the file. The number of records needed is calculated from the
following equations. The number of records per track quoted assumes IBM
3350 compatible disk drives. The basic reference is Brown (1977).

DATABASE

Records = CEIL((NHIST * NINC)I1000)
+ 2 * CEIL((# of Task & Secondary Responses)/1000)
+ CEIL((NTASK * 2)/1000)
+ CEIL((NSEC * 2)11000)
+ 2 * CEIL((NINC -)/1000)
+ 2 * CEIL(NINC(1000)

4 Records per Track

The # of Task and Secondary Responses is found on the INPSTD summary
page printed at the end of the INPSTD output.

CREATED

Records = 4 + (# Potential 1000 Element Created Rows/Columns)
4 Records per Track

SYMTAB2

Records : 120 6 960 Bytes per(16 Records per Track = 8 Tracks

22-

*~'cil~~i,Ij.

INTIL
I[NITIAL2

PROGRAM TO INITIALIZE THE RRARNG AND INTERPRETER FILES

/JCL SETUP. INITIAL2 PROGRAM.0

EXECT ThEREARONG AABS RET O OT E N

REALFOI D AT mTAASSEO, CREATEWC00), NT240)

DEFNE-ILES CRG10A,SPAC,,EC00))
DETO FINDE FILMAE 1 (2,DIS0,UIRCA),NTSD

//AT1 LOATADO DASYTA 2DSONWCTGNTSSA

oo I O .1,120 SPCE(90,12

I C1.J EF-BLEL-0SKI~~6)

160OURTE 013 * fE)S4h

C RIGATE INITIALIZTH R ECOD EAR TO CARFL

9999FIANE AR FIE ILE).100UIRC
STOEFIE 8(10P00,,RC
DEF1ND IE 3(2, 24,,R

WRSYIT NTZ:ON DOOD;T ATBS

00 140 J-1,

00 10 K-,100

130 OAAG(K_
-CN

REARNG

INTRODUCTION

REARNG (Data Rearrangement) alters the physical structure of the data-
base to allow more efficient access to and retrieval of data itims. Before
data rearrangement occurs the physical records of the files maing up the
database hold information about many variables for one incumbent. After
data rearrangement they hold information about many incumbents for one vari-
able.

REARNG is the last step in preparing the database for use by the
CODAPSO interpreter. In most studies, REARNG will immediately follow
OGROUP. If OGROUP is omitted, then REARNG will follow INPSTD.

NOTE

The data access routines in the CODAPSO Interpreter assume that the
data are physically laid out as they will be after successful execution of
REARNG. The interpreter will not function if the database has not been
rearranged.

If the OGROUP routine has been executed, the REARNG routine will store
the incumbents in hierarchical sequence order. If the OGROUP routine has
not been run, the incumbents will be stored in the order they were origi-
nally received by INPSTD.

NOTE

There are no control cards for the REARNG routine.

REARNO
EIECUTION SETUP

The setup necessary to execute the REARNG database creation routine may
be found on the following page. The only output generated by REARNG is
whether or not the run was successful.

25

I. ./,.'"_ ..._"- "' _ _i .

REARIG
RREARNG

EXECUTION JCL FOR REARNG DATABASE CREATION ROUTINE

/'JCL SETLP TO EXECUTE THE REARNG DATABASE CREAT ION*
/*ROUT INE. REARNS I S STORED AS A MEMBER IN P05 LOAD*

MI ODUJLE CODAPbO.

1/EXEC PQ~.REARMG,REGIOt*5I2K
//ST!PLISDO0 DStsCODAPO,DISP.SHR
//FM DFOO1 DO DSN.OATABASE,DISPmOLO
//TO2OO1 00 DSb4.INPFILEOISPu0LD
I/FTOOOD0 SYSOUTmA
//T12OO1 DO DSNSWTAB1,DISP.OLD
//T1FOOI 00 DSN.S'WTAS2.OISPOLD
//TIFOOl DO 'nSM.GRPILEDISPmOL0
//FT16FOOI 00 DSN.GRPI4SN,DISPOD
//FT24FOO) DD DSW&&TD4P24,UNITSYSDA,D ISPC NEW,DELETE).

// DcsCRECPNF,LRECLU36O,BLKSIZE.3600),
II SPAE.(3600,C000.1))

26

THE CODAPSO
tINTERPRETER

INTRODUCTION

Up to this point, the reader has been made.familiar with the database
creation phase of CODAP80. The rest of this manual is to familiarize the
reader with the phase of CODAPSO that will actually generate the summary
statistics and reports necessary in the analysis of occupational infor-
mation.

The following portion of this manual will cover the principles of the
CODAPSO language, the building blocks by which CODAPSO language statements
are written, the individual procedures existing in the CODAPSO system for
manipulating the database and producing reports and will illustrate, through
the use of syntax graphs (a kind of map detailing the syntax keywords
allowed in a procedure and the organizational path of proper procedure
statement construction) and examples, the method by which the system is used
as a tool by the job analyst.

At the present stage of development, there are 17 procedures for data
base manipulation and reporting residing in the CODAPS0 system.

These 17 procedures are:

ADDATA INPUT
AVALUE PRINT
BEGIN RANDOM
CLUSTER RELY
COPY REPORT
CORR SELECT
CREATE STANDARD
DESCRIBE VARSUM
ENqD

The function, syntax and options of each of these procedures are
detailed. Each of the CODAPSO interpreter procedures are presented in
alphabetical order. Appendix A contains a complete CODAPS0 interpreter run
sequence as would be submitted to the computer by a user. The presentation
order of the procedures appearing in this run sequence are loosely organized

in a manner consistent with the steps traditionally taken in job analytic
studies. It should be recognized though that CODAP0 represents a signifi-
cant departure from previous occupational data analysis computer systems.
both in the power that can be brought to bear on the occupational database
and in the conceptualization of how the job analyst goes about answering
questions of occupational information.

27

L

j _ _ _ _ _ __ __

CODAPSO

PRINCIPLES OF THE CODAP80 LANGUAGE

WHY A LANGUAGE?

CODAP80 is a specialized and extendqd database management system. It
stores, retrieves, and processes data in an organized and systematic manner
without redundancies. As such, some facility is needed to instruct the
system exactly which of its many functions should be performed in a given
situation.

Many database management systems use a data manipulation language as
the vehicle for communication between the user and the system. This idea
was borrowed for CODAP80. and then extended. The CODAPS0 language does
indeed give the job analyst most of the functions that a data manipulation
language would, but it goes farther by also providing statistical and
analytical procedures unique to job analysis in their current application.

DESIGN GOALS

The CODAP80 language was designed with several purposes in mind,
including:

- providing the job analyst with a powerful tool for
accomplishing general data management

- providing the job analyst with a computerized capability to
carry out any known or foreseeable type of job-analysis
related data processing

- providing the job analyst with a simple, easy to learn, and
easy to use method for performing basic job analysis.

ENGLISH-LIKE SYNTAX a SEMANTICS

The CODAPO0 language is English-like. It can be used to write programs
of statements that resemble sentenoes. A reader who understands the basic
function of the action invoked by each CODAPS0 verb can read through a
program written by someone else and still gain a good understanding of what
the program did.

CODAPSO statements begin with a verb or other major key word describing
the action to be performed.

Variable names and options appear as qualifiers in the CODAPS0

statement.

Each statement ends with a period.

Commas and blanks are used as delimiters between keywords and other
segments of the statements.

29

f I

CODAPSO

tFREE FORMAT

CODAP80 statements in general may appear anywhere on the card image.
Card column dependencies have been avoided in the language. Statements may
even cross card image boundaries.

HOW USED

To cause the CODAPSO system to perform job analysis functions, the job
analyst prepares a CODAPSO source program with statements in the proper
order to specify the desired actions, then submits the CODAP80 source pro-
gram to the CODAPe0 interpreter.. The interpreter will validate the program,
translate it into appropriate internal representation, and execute it,
generating reports and manipulating data as specified by the program.

CODAPSO IDs

Created IDs, that is, ID. that are added to the database after database
creation, may be up to 12 characters long. The first character must be a
letter or underscore and contain no special characters ($, 0, , -, etc.)
other than the underscore.

RESERVED
WORDS

Certain words or sets of characters may not be used as created IDs.
The words in question are already being used by CODAPSO as part of its work-
ing vocabulary. See the section on CODAPSO reserved words to identify which
ones they are.

CODAPS0 LIMITS

No more than 300 created IDs may occur in a single CODAP80 run stream.
No more than 2000 unique words may appear in a CODAP0 source program.

SYNTAX ERROR
HANDLING

CODAP8Os Interpreter scans the language source input by the user and,
if a procedure statement is used improperly, or a keyword is misspelled,
flags the error with a dollar sign C'V'), changes the status of the run to
one of syntax checking only, and prints out an appropriate error message (if
possible). If even one error is detected, the CODAPSO source language
statements will not be executed.

2(

- 2,

K_..._ _ _ _ _.. _.. -..... ..., ,. .

CODAP80

As an example, note the following source language statements:

BEGIN SIWLEDATASO EXECUTE.
PRINT COLUMNS (INCMBENTS) NORENARKS / ROWS (HI-,H5)

HEADINGN'PRINT COMMAND CONTAINING SYNTAX ERRORS'.
END.

CODAPSO will respond to the errors (INCUMBENTS spelled wrong, and there
is no H5 on the database) in the above statements in the following way.

BEGIN SAMLEDATBO EXECUTE.
PRINT COLUMS IINOME4TS) NOREMAKS / ROWS (HI-HS)$
ERRO MESSAGE 25

S
MESSAGE 9

S
ERROR MESSAGE 40

HEAWJING0OPRINT COMMAND CONTAINING SYNTAX ERRORS'.END.

EOR FOUND IN SOURCE CO0E-EXECUTION PHASE CANCELLED

ERROR MESSAGES

9 INTEGER PORTION OF SYSTE4 VARIABLE TOO LARGE
25 A OIP NME HAS NOT BEEN SPECIFIED
40 EXPECTING HISTORY VARIABLE IN SEQUENCE

CODAPSO INTERPRETER
EXECUTION SETUP

A complete CODAPSO interpreter run stream, with JCL setup, may be found
on the following page. Note that some of the files that were necessary
during database creation no longer appear.

30

~~-:4

CODAPSO

CODAPSO INTERPRETER
EXECUTION JCL FOR THE CODAPSO INTERPRETER

JCL £ SETUP TO EXECUTE THE COOAPSO I NTERPRETER. THE*
/* INTERPRETER (INTERP) IS STORED AS A MEMBER IN POS *
/LOAD MODULIE COCAPSO.*

//EXEC PONINTERP,REGION.2OI(
I/STEPLIB 00 0SMWCODAP9O,OISuSHR
I/FTOIFOOI D0 DS#wDATA8ASE,OISP.OLO
//FT05F01 00 ODNAMESYSIN
//FT06FOO1 00 SYSOUTRA
//PT07FOO1 D0 SYSOUT0B
//FTOSFOO1 00 DS~mGREATED,DISP*OLD
iiFlOFOOI 00 OSU.VARCOMOISPOOLD
//FTIFOOI 00 OSM-S'IWTAB2,DISPOLD
//F'14F001 00 OS*mCARDF ILE, I SPOLD
//FT17FOOI 00 0S1m0ECO0EDISPOLO
//FTIFOOl 00 OSWERR0RFIL,0ISPrnSH
//FT2OFOOl 00 OSN.&&TEIP,UNI T.SYSOA,DI SP(NEW,OELETE),

II 0CU.(RECFM-P,LRECLu36OO,BLKSIZE.3600),
// SPACE=(3600,CGOO,1))

//FT2IFO01 00 OSN*&&TDMP21,UNITOSYSOAOISP.(NEW.OELEE),
If 0OU.(REOPI4F9 LRECLuI2960,BLKSIZE.12960),
II SPACEu(12900,(1550,l))

//F'22FO01 00 OSNMATBt'22,UN41T-SYSOA,ISP(NEW,OELETE),
If 0O3.m(RECFMNF,LRECLa 12960,BLKSIZEu 12960),
II SPACE(12960,C1550,1))

//FT23FOOi 00 OS#*4&T923,UNITSYSA,DISP(EW.ELEE),
II 0CU.(REFOflF,LRECL.244,BLKSIZE.244),
// SPACE.(244,C1000.1))

//FT24FOO1 00 OSM&TEMP24,UNI TUSYSDA,OISPO(NEW,OELETE),
II OCU.(RECFNOFLRECLS3600,BLKSIZE.3600),
// SPACE(3600,(6000,l))

//FT2FOO1 00 OSNE&TDP2S1,UNIT.SYSOA, I SPO(NEW,OELETE),
// 0DC9.(REOPFinF,LRECLa3600.BLKSlZEs3600),
II SPACE-(3600,(6000,1))

//FT26FOOI 00 OSN.UTEW2G,UNI T.SYSOA 901SPN(NEW ,OELETE),
II DOB(RECFI4.f,LRECL.4000,BLKSIZEAOOO),
II SPACE(4000,(200,1))

//SYSIN 00
BEGIN SAIWtEDATASO EXECUTE.
CLUSTER COLUMNS INCUMENTS FOR TASKS OVL MAXIMIZE

IICHSN NOSAVE 'INCLNBENT HNI

MINME4-2
NEA0INGE#IMOWENT CUSTERING'.

ADOATA ROWS FOR INICWENTS WS
TRACTOR NOSAVE 'OPERATE TRACTOR'
JACKHAMMER NOSAVE 'OPERATE JACKHAMMIER'
BULLDOZER NOSAVE 'OPERATE BULLDOZER'
P*#ERkIEMCM NOSAVE 'OPERATE POWERWENCH'
FLAAIETHROWER NOSAVE 'OPERATE FLAMETHOWER' FORMAT '(7F1.O)'.

SELECT ROWS NEMOUTY C N4 TRACTOR .JACKHAMMER BULLDOZER POWERWENCI FLMETHROWER
INCNSN) NOSAVE 'NEWOUiTY.

PRINT ROWS (NElOUTY) / COLIIINS (INCUMBSENTS) MISSING
HEAD INP. 'THE COCAPSO INTERPRETER'.

END.
1100011
0010100
1100000

1001000

31

CODAPSO

CODAPS0 RESERVED WORDS
TH I FOLLOWING WORDS MAY NOT BE USED AS CREATED IDS

AOOATA HVARS SELECT
ADJUST IF SORT
ALL IN SORT
AVALUS I NCS SROWS
AVE I NCUMBENTS STANOAO
AVGA INPUT STAT
AVOP L STO
* LIST STO
BEGIN MAX STOA
BINARY MAXIMIZE STOP
BY MEAN Sum

CARD MIN SUMONLY
CCNST MINME4 SVARS
CCpLS MISSING SYSCNST
CGRS. MOOS , SYSCOLS
CLUSTER MODULES SYSGROUPS
OMOOS N SY9MODS
COL N IST SYSROWS
COLS NINCS TAPE
COLUMN NONZERO TASKS
COLUMNS NOPAGE THEN
CONSTANTS NOR84 TROWS
COPY NORENARKS TVARS
CORR NORESET USING
COUNT NOSAVE VARSUM
CREATE NOSKIP WITHIN
CROWS MOSTIO
CU44 NOSUIMMRY
0 NOT
DECODE NSEC
DES NTASK
DESCEND ON
DESCENDI NG OVERLAP
DESCRIBE OVL
DIAGRAM OVLGRP
OISTANCE PAGE
OSQUARE PCNT
02 PERCENT
ELSE PRINT
END RANOOM
EXECUTE RAWSU14
FOR REL
FO4AT RELY
FROM REPORT
GROUPS RESET
HEADING ROW
HROWS ROWS
HSN SAVE

32

I I

THE SAMPLE DATABASE

INTRODUCTION

The sample database was generated through the execution of the database
creation routines (INPSTD, OGROUP and REARNG). The value found in the
sample database will be used in the examples given of the CODAP80 procedure
language statements which appear in the rest of this manual. The sample
database provides a consistent point of reference for creating meaningful
examples. By examining the database, the reader should be able to determine
just exactly where the numbers generated by the example CODAPSO procedure
language statements came from and thereby gain a better understanding of the
function of each language statement.

THE SAMPLE
DATABASE

In the sample database there are seven incumbent workers; each having
been asked to respond to four history variables (H1-H4), five task variables
(T1-T5) and five secondary variables (Sl-S5). The incumbent worker
designations represent the columns of the database and the variables the
incumbents are measured on represent the rows of the database. Referring to
the row variable H4 (Incumbent ID), the reader will notice that the
incumbents are not in the order in which they were originally input (see
INPSTD). Following INPSTD, OGROUP was run on the database. When the main
OGROUP clustering routine is ever executed on the database, the REARNG
routine will reorganize the database by sorting the incumbents in ascending
hierarchical sequence number (HSN) order as defined by the OGROUP routine
(this reorganization as a function of HSN is for purely internal systems
level processing - the user only needs to be aware that a reorganization has
occurred). Had the main clustering routine not been run on the database,
REARNG would have left the database in the order in which it was originally
input.

SYSTEM
CLUSTER GROUPS

The ID's Gi-G6 are system cluster groups generated from the execution
of the OGROUP routine. They represent the incumbent aggregates that were
formed during the cluster operation. Any future reference to any of these
system group ID's in CODAPS0 language statements will serve to identify to
the system which incumbents (columns) are to be addressed for processing.
For example, were the system cluster group ID 'G4' to be referenced, the
CODAPS0 system would direct processing to columns 1-3 of the database.

DATABASE
VALUES

(All asterisks (0) occurring in the sample database indicate a missing
value. S=m of the values in the database have been rounded.

33

I
_

SAMPLE DATABASE

I1 12 13 14 15 16 17

Hi 2 1 2 1 I. 1 1
H2 19 23 * 4 1 275. *•
H3 1 2 1 19 3 30 16
H4 1 5 7 2 4 6 3 STUDY ID
Ti 64 1 0 11 = 4 36 0 SAMPLEDATAS0
T2 • 9-11 0 W444 64 43
T3 9 22 20 0 18 0 57
T4 18- 56 50 22 0 0 0

T5 0 0T30 22 35 0 0
Si 2 * 2 *
S2 1 1 2 F 1 3
S3 122 *
S4 2 1 2 2 *

S5 * * 1 1 1 * 2

DATABASE REMARKS SYSTEM GROUP COLUMN AGGREGATES

Hi SEX Gi 12 13
H2 AGE G2 14 15
H3 YEARS ON JOB G3 14 15 16
H4 INCUMBENT ID G4 I1 12 13
Ti SUBDUE VIOLENT INMATES G5 14 15 16 I7
T2 SHAKE DOWN INMATES G6 I1 12 13 14 15 16 17
T3 SHAKE DOWN VISITORS
T4 ESCORT INMATES
T5 TESTIFY IN COURT
Si SECONDARY - SUBDUE VIOLENT INMATES
S2 SECONDARY - SHAKE DOWN INMATES
S3 SECONDARY - SHAKE DOWN VISITORS
S4 SECONDARY - ESCORT INMATES
S5 SECONDARY - TESTIFY IN COURT

34

ADDATA

INTRODUCTION

PURPOSE

The ADDATA procedure provides the means by which multiple rows or
columns may be appended to an existing CODAP80 database. In addition, the
user may optionally request that the elements of the rows or columns being
appended be relativized to a percentage scale. The ADDATA procedure is
particularly useful for adding large amounts of information to a database
that was not available when the database was originally created.

FORM

The general form of the ADDATA procedure is as follows:

1) The procedure keyword ADDATA.
2) The keyword ROWS or COLUMNS. This keyword alerts the

system that either rows or columns are being added to the
database.

.3) A group or module designation representing the "length"
or number of elements that are contained in the row(s) or
column(s) being added.

4) A designation of the number-of rows or columns being
added and, optionally, those elements of the rows or
columns that are to be relativized.

5) A user supplied valid CODAPSO ID (or IDs) to be
associated with the added row(s) or column(s).

6) A user supplied FORTRAN format for reading-in the row(s)
or columns(s) being added to the database.

7) Options controlling the permanence of the added ID(s),
missing value considerations and whether or not the added
information is to be printed.

BEGIN SAMPLEDATA80 EXECUTE.
ADDATA ROWS FOR G6 N=1

SANDBLASTER 'OPERATE SANDBLASTER'

FORMAT '(7F1.0)'.
END.
0110010

In this example, a single new row named SANDBLASTiR is being added to
the database. There will be a value of SANDBLASTER for every column
associated with the system group ID G6 (11-17, see Sample Database). The
string OPERATE SANDBLASTER, enclosed in single quotes, is the remark to be
associated with the new row. The keyword FORMAT signifies that the row ID
SANDBLASTER is to be read with the following format specification that is
encloed in single quotes and parentheses.

35

hi / -

ADDATA

OUTPUT FROM PROCEDURE

The result of executing the ADDATA procedure will be new rows or
columns optionally added to the database. Specification of the optional
keyword LIST in the syntax of the ADDATA procedure will produce a printed
listing of the rows or columns being added.

I3

36

ADDATA

tADDATA SYNTAX

Refer to the syntax graph of the ADDATA procedure.

ADDATA

The keyword ADDATA identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates whether the data being added are
conceptual rows or columns of the database.

FOR

The FOR keyword alerts the ADDATA procedure to expect a following group
or module ID.

GROUP ID

A group ID is an identified aggregate of database columns. If the
preceding data type designation was ROWS, then a group ID must follow the
FOR keyword. The group ID may be one previously defined thro"g the use of
the SELECT procedure, one of the CODAP80 system cluster groups (as defined
at database creation time by the OGROUP routine) or the CODAPS0 system group
INCUMBENTS. The group ID specification serves to indicate to the ADDATA
procedure the database columns for which the new rows are being added. The
group ID also serves to indicate the "length" or number of elements the
added rows will have.

MODULE ID

The module ID is an identified aggregate of database rows. If the

preceding data type designation was COLUMNS, then a module ID must follow
the FOR keyword. The module ID may be one previously defined tF;-gh the
use of the SELECT procedure, or may be one of the CODAPSO system modules
HVARS, TVARS, TASKS or SVARS. The module ID specification serves to
indicate to the ADDATA procedure the database rows for which the new columns
are being added. The module ID also serves to indicate the "length" or
number of elements the added columns will have.

3

37

F',.,

ADDATA

N
ASSIGNMENT OPERATOR
CONSTANT

The ADDATA procedure requires the user to specify the number of rows or
columns that are being appended to the database. For example, were the user
to be adding five new rows to the database it would be necessary to
appropriately specify the syntax "N=5" to alert the ADDATA procedure of this
fact.

REL
CONSTANT LIST

The optional appearance of the keyword REL followed by a constant list
indicates to the ADDATA procedure that all or part of the rows or columns to
be appended are to be relativized to a 100 point scale. This option allows
additional incumbent raw time spent responses to be conveniently converted
to percent time spent values.

The constant list following the REL keyword provides the means by which
the user can specify which elements of the appended rows or columns are to
be relativized. The form of the constant list consists of integer numbers
enclosed in parentheses. For example, specification of the constant list
"(5, 7, 10-12, 14)" indicates that the fifth, seventh, tenth thru twelfth
and fourteenth elements of the appended rows or columns are to be
relativized. See, Example 1 of ADDATA.

ID

The. user has two choices in how ID's can be specified to the ADDATA
procedure. Which choice the user picks is determined by whether or not the
user wants to individually name each row or column added to the database or
to let the procedure append a numeric value to a supplied "seed" ID. See
Examples 2 and 3 of ADDATA for illustration.

Specification of the optional keyword NOSAVE indicates that the added

rows or columns will exist on the database only for the duration of the
computer run.

REMARK

Ths is a string of up to 240 characters enclosed in single quotes.
The remark will be associated with the added rows or oolumns. A remark must
be associated with the added rows or columns.

LIST

Specification of the optional keyword LIST indicates that a printed
listing of the added rows or columns is to be produced.

38

ADDATA

MISSINGASSIGNMENT OPERATOR

CONSTANT

Some of the elements of the rows or columns to be added to the database
may be missing (as. opposed to being zero or blank). To signal the ADDATA
procedure that a given value is missing, choose a unique integer constant as

the identifier in the missing option. For example, suppose the user yas
adding a new row to the database, and one of its five elements was missing.
By indicating a unique integer constant in the missing option (let's say
99), the ADDATA procedure would then know that any values of 99 that were
input as the new row should be set to missing (see ADDATA Example 3).

FORMAT

The FORMAT keyword serves to indicate to the ADDATA procedure that the
following string enclosed in single quotes is to be used as the input format
for reading-in the values of the rows or columns to be added.

FORMAT SPECIFICATION

The format specification for the ADDATA procedure may be any valid 1966
Ansi Standard FORTRAN format in parentheses, enclosed in single quotes. The
format will be used by the ADDATA procedure to read-in the values of the
added rows or columns. The place in the input stream o a CODAP80 source
language program where the values of the rows or columns to be added are to
appear is directly after the terminating END statement (see ADDATA
Examples). For an explanation of FORTRAN formats, consult any introductory
FORTRAN text.

PERIOD

A period ('.') must end the ADDATA statement.

39

I i., _

ADDATA

ADDATA EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATAS0 EXECUTE.
SELECT ROWS SYSTEMROWS (HI-H4, T1-TS, S1-S5)

'ALL SYSTEM ROWS ON DATABASE'.
ADDATA COLUMNS FOR SYSTENROWS N=1 REL (5-9)

CASEID 8 'CASEID=8' FORMAT '(F1.0, 2F2.0. l1F1.0)'.
END.
2270487964111122

The above example is illustrating how the data for an incumbent worker
may be added to an already existing database. Raw time spent responses from
the incumbent are to be relativized to a 100 point percentage scale.

The SELECT procedure is first being invoked to create a module (named
SYSTEMROWS) containing all the system rows on the database (see Sample
Database). The ADDATA syntax is requesting that a sigle new column (as
indicated by the N=1 specification) be permanently added to the database,
and that it be named CASEID S. The new column will have an element for
every system row on the database (as defined by the created module

SYSTEMROWS). The specification REL (5-9) indicates that the fifth thru
ninth elements of the column to be added are to be relativised to a 100
point percentage scale (the fifth thru ninth elements of the new column
correspond to the task rows of the database). After execution of ADDATA
Example 1, the new crested column will conceptually reside on the database
as follows:

CASEID_8

Hi 2.00
H2 27.00
H3 4.00
H4 8.00
Ti 25.93
T2 33.33
T3 22.22
T4 14.81
T5 3.70
S1 1.00
S2 1.00
S3 1.00
S4 2.00
S5 2.00

40

-""o

ADDATA

* EXAMPLE 2

BEGIN SAMPLEDATA80 EXECUTE.
ADDATA ROWS FOR G6 N=5

TRACTOR 'OPERATE TRACTOR'
-JACKHAMMER. 'OPERATE JACKHAMMER'
BULLDOZER 'OPERATE BULLDOZER'
POWERWENCH 'OPERATE POWERWENCH'
FLAMETHROWER 'OPERATE FLAMETHROWER
FORMAT '(7F1.0)'.

END.

1100011
0010100
1100000
1001000
0000001

The ADDATA syntax in Example 2 is requesting that 5 new rows be
permanently added to the database. The rows will have an element for every
incumbent (system) column on the database (as indicated by the system
cluster group G6). After execution of ADDATA Example 2, the new created
rows will conceptually reside on the database as follows:

I_ 12 13 14 15 16 17

TRACTOR 1.00 1.00 0.00 0.00 • 0.00 1.00 1.00
JACKHAMMER 0.00 0.00 1.00 0.00 1.00 0.00 0.00
BULLDOZER 1.00 1.00 0.00 0.00 0.00 0.00 0.00
POWERWENCH 1.00 0.00 0.00 1.00 0.00 0.00 0.00
FLAMETHROWER 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Once the new created rows have been appended to the database, they may
be used by other CODAP80 procedures for processing.

EXAMPLE 3

BEGIN SAMPLEDATAe0 EXECUTE.
ADDATA ROWS FOR 06 N=5

EQUIPMENT 'OPERATE EQUIPMENT
MISSING - 9 FORMAT '(7P1.0)'.

END.
1199911
9919199
1199999
1991999
9999991

The ADDATA syntax in Example 3 is requesting basically the same thing
as that in Example 2. Namely, that 5 new rows be added to the database.
The primary difference between Example 2 and 3 is that. in Example 3. the
user has opted not to individually name ach of the added rows. Instead,
the user has supplied a "seed" ID (EQUIPMENT) that will have a numeric value
(beginning with the number 1) appended to it for every row being added.

41

~ ~*~.* 77. 77

I

ADDATA

Specification of the optional syntax MISSING=9 indicates to the ADDATA
procedure that any elements of the rows being added that are equal to 9 are
to be set to a missing value.

42

.... --- , <,.1.

ADDATA

14

Ii Ib~

I
I

I.- I
I

10 ~0 B

I I II
I
I

I I
U . Id

C I I

---.-- ~ 43 1
* I . . .I;; --------------. *~ .*,- - -A

.*- - -. t I * - *'~-. fS~.* .. *..

AVALUE

INTRODUCTION

PURPOSE

The AVALUE procedure will compute statistics on any specified aggregate
of database rows (a modqle) across one or more specified aggregates of
database columns (a group list). In this respect it is similar to the
DESCRIBE procedure. The difference between the two though is that unlike
the DESCRIBE procedure, which uses the actual values of the row or column
being processed to determine the desired statistic, the AVALUE procedure
substitutes the values from a specified row for the appropriate values of
the rows being processed before determining the desired .statistic. The
AVALUE procedure is particularly useful in answering questions having to do
with determining for each task the average age. income or job title (any
database row may be specified) of those incumbents of interest performing
the tasks (any module may be specified).

FORM

The general form of the AVALUE command is as follows:

1) The procedure keyword AVALUE.
2) The data type designation ROWS.
3) A description of the aggregate of rows upon which the

procedure is to calculate statistics (specified in the
form of a module ID).

4) A description of at least one column aggregate (specified
in the form of at least one group ID) across which row
statistics are to be calculated.

5) A row ID, the values of which will be substituted for the
appropriate values of the rows being processed in 3.

6) A new ID. The new ID will have a numeric value, ranging
from 1 to the number of group IDs specified in 4,
appended to it by the system. The user must be careful
not to specify an ID that will conflict with one

previously defined in the database. The user must also
take care to specify an ID that, when the numeric value
is appended to it by the system, is not longer than 12
characters. If only one column aggregate (group ID) is
specified in 4, then a numeric value Is not appended to
the new ID.

7) One of the statistical functions: AVGP. AVGA, STDP,
STDA. SUM or N. The function specified defines the type
of statistic AVALUE will compute for the values
substituted from the row specified in 5.

8) Optionally, the keyword NOSAVE.
9) Descriptive text (a remark) supplied by the user that "

will be associated with the new column IDa added to the
database.

44

1

AVALUE

t 10) Either a period or semicolon. If a period is specified,
then the AVALUE command syntax will be finished. If a
semicolon is specified, then a new set of syntax de-
scribed in 6-10 above will follow.

NOTE: The AVALUE procedure is one of the few proce-
dures in CODAP80 that is not symmetric. AVALUE
may only be used to calculate statistics on rows
measured across columns.

EXAMPLE

AVALUE ROWS TASKS FOR (INCUMBENTS) USING H2
H21NCAVGP := AVGP NOSAVE
'AVERAGE AGE FOR INCUMBENTS PERFORMING TASK'.

The above AVALUE command syntax will calculate, per task, the average
age of the Incumbents who are performing the task. An average age (H2) is
to be calculated for every task row on the database (as indicated by the
system module TASKS) across all incumbent columns (as indicated by the
system group INCUMBENTS). The new column ID will be designated H21NCAVGP
but will not be permanently saved on the database.

OUTPUT FROM PROCEDURE

Execution of the AVALUE procedure produces no printed output. For
every group ID specified In the group list, AVALUE will optionally add a new
column to the database.

I

45
t

(i

_ _ I
' ' X ' " " :1

i
AVALUE

AVALUE SYNTAX

Refer to the syntax graph of the AVALUE procedure.

AVALUE

The keyword AVALUE identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS indicates that AVALUE is to perform its calculations
on rows of the database.

MODULE ID

A module ID Is any defined aggregate of database rows. The module ID
may be one previously defined through the use of the SELECT procedure, or
may be one of the sytem modules HVARS. TVARS, TASKS or SVARS. The module ID
specification serves to identify to the AVALUE procedure the database rows
u which statistics are to be calculated.

FOR

The FOR keyword serves to indicate to the AVALUE procedure that the
following group list identifies those aggregates of database columns across
which calculations are to be performed.

GROUP LIST

A group list is a list of at least one group ID enclosed in paren-
theses. Created group IDs (such as would be generated by SELECT), system
group IDs (such as the keywords INCUMBENTS or INCS) and system group lists
(such as G1-G3, as defined by clustering at database creation time) may al
appear in a group list. Each group ID specified in the group list repre-
sents a different aggregate of database columns across which statistics for
a row are to be calculated.

USING

The USING keyword serves to alert the AVALUE procedure that the follow-
ing row ID is to provide the values to be substituted when calculating the
row statistics across column aggregates.

46

" Jj

*AVALUE

ROW ID

The row ID specification may consist of any existing row on the
database. The row ID specified will provide the values to be substituted
when calculating row statistics across column aggregates.

ID

A user supplied "seed" ID. Appended to this ID will be a numeric
value, ranging from 1 to the number of group IDs specified in the group
list (unless, of course, only a single group ID appeared in the group list).
Because AVALUE is not symmetric, all new IDs generated by this procedure
pertain to added database columns.

ASSIGNMENT OPERATOR

Either of the symbols 'I-' or ':'. Either of these symbols may be used
to separate the seed ID from the statistical function that follows.

STATISTICAL FUNCTIONS

The statistical function specified defines the type of statistical
operation performed across columns by AVALUE on the substituted row values.
The six acceptable statistical function keywords are as follows:

*AVGP - Average, excluding missing values.
AVGA - Average, including missing values.

*STDP - Standard deviation, excluding missing values.
STDA - Standard deviation, including missing values.
SUM - Sum of non-missing values.
*N - Number of non-missing values.

Off a calculation is being performed on task rows across columns, zeros
are interpreted as missing.

NOSAV2

Specification of the optional keyword NOSAVE indicates that any new
columns generated through the execution of the AVALUE procedure are not to
be permanently saved for future reference.

REMARK

This is a string of up to 240 characters, enclosed in single quotes.
The remark will be associated with the new column IDa generated. A remark
must be associated with the new IDs.

47

AVALUE

PERIOD OR SEMICOLON

A period (.') must end the syntax of the AVALUE procedure. If the
user desires to calculate more than one statistic on the same database
subset, the command syntax may be terminated with a semicolon, followed by
the specification of a new ID, statistical function and a remark (Cee AVALUE
example 1).

48

F

AVALUE

AVALUE EXAMPLES

EXAMPLE 1

AVALUE ROWS TASKS FOR (G6) USING H2
AVGPAGE := AVGP

'AVERAGE AGE (AVGP). G6';
STDPAGE := STDP

ISTD AGE (STDPS, G6'.

The above AVALUE command syntax will calculate, for each task row gn
the database (as designated by the system module TASKS), the average and
standard deviation (AVGP and STDP, missing values excluded) of age (H2) for
those incumbents performing the task. All incumbent columns of the database
(11-17) will be included in the 'calculations owing to the specification of
the system cluster group G6. Execution of the above syntax will result in
two created columns, each 5 elements long (one for each task) being added to
the database. The created column AVGPAGE will contain the average age of
the incumbents performing the tasks and column STDPAGE will contain the age
standard deviations. Note the use of the semicolon in the command's
syntax.

The command syntax AVALUE ROWS TASKS FOR (G6) USING H2 defines the
following data subsets of the Sample Database that will go into the
computations:

I 12 13 14 15 16 17

T1 64 11 0 11 24 36 0
T2 9 11 0 44 24 64 43
T3 9 22 20 0 18 0 57
T4 16 56 50 22 0 0 0
T5 0 0 30 22 35 0 0

H2 19 23 • 41 27- 53

The values that will be computed for the five elements (one per task)

of the created column AVGPAGR are as follows:

AVGPAGE (1) : (19+23+41+27+53)/5 = 32.6
AVGPAGE (2) (19+23+41+27+53)/5 = 32.6
AVGPAGE (3) m (19+23+27)/3 = 23.0
AVOPAGE (4) = (19+23+41)/3 = 27.7
AVGPAGE (5) a (41+27)/2 = 34.0

The values that will be computed for the five elements (one per task)
of the created column STDPAGE are as follows:

STDPAGE (1) - (((192+232+412+272+5)5-((19+23+41+27+53)2 / 5))/4) "5 = 14.1

STDPAGE (2) = (((199+232+412+272+532)-((19+23+41+27+53)2/5))/4)'5 = 14.1

49

AVALUE

STDPAGE (3) = (((192+232+272)-((19+23+27)2/3))/2)-5 = 4.0

STDPAGE (4) = (((192+232+412)-((19+23+41)2/3))/2)"5 = 11.7

STDPAGE (5) = (((412+272)-((41+27)2/2))/il) = 9.9

The fact that the keyword NOSAVE did not appear in the syntax of AVALUE
example 1 indicates that the two columns (AVEPAGE and STDPAGE) are to be
saved permanently on the database. For an illustration of a report
displaying the created columns produced above, the reader is referred to
PRINT example 1.

50

/ p ___ ____ ___ ___ ____ ___ ____ ___ ___

AVALUE

EXAMPLE

2

AVALUE ROWS TASKS FOR (G4, G) USING H2
AVGAAGE := AVGA
'AVERAGE AGE (AVGA), G4 AND G5'.

The above AVALUE command syntax will calculate, for each task row on
the ditabase (as designated by the CODAP80 system module TASKS), the average
(AVGA, missing values Included) of age (H2) for those incumbent columns
identified by the CODAPS0 system cluster group 04 (11-13). and then again
for the incumbent columns in system cluster group G5 (14-17). Execution of
the above syntax will result in two created columns, each 5 elements long
(one for each task) being added to the database permanently. The two
created columns will be named AVGAAGEI and AVGAAGE2 (the numerals being
appended to the seed ID as a function of the. number of group IDs appearing
in the group list). Note closely the difference in the computational
process applied between the statistical functions AVGP (used in example 1)
and AVGA (used in the present example).

The command syntax AVALUE ROWS TASKS FOR (G4, G5) USING H2 defines
the following data subsets o the Sample Database -that will go into the
computations:

IIG4 05

1 12 [3 [4 15 16 17

T1 64 11 0 11 24 36 0
T2 9 11 0 44 24 64 43
T3 9 22 20 0 18 0 57
T4 18 56 50 22 0 0 0
TB 0 0 30 22 35 0 0

H2 19 23 • 41 27 53

The values that will be computed for the five elements (one per task)
of the created column AVGAAGEI are as follows:

AVGAAGE(1) = (19+23)12 = 21.00
AVGAAGE(2) = (19+23)/2 = 21.00
AVGAAGEI(3) = (19+23)/3 = 14.00
AVGAAGEI(4) a (19+23)/3 = 14.00
AVGAAGE(5) z M

The values that will be computed for the five elements (one per task)
of the created column AVGAAGE2 are as follows:

AVGAAGE2(1) = (41+27+53)/3 a 40.33
AVGAAGE2(2) = (41+27+53)/4 z 30.25
AVGAAGE2(3) = (27)/2 a 13.50
AVGAAG2(4) = (41)/ = 41.00
AVGAAGE2(5) a (41+27)/2 a 34.00

51

S1 ,
S~ .. ~.L',, ~ - ..-.

A VALUE

2 1

52

BEGIN

INTRODUCTION

PURPOSE

The purpose of the BEGIN command is to delineate the beginning of a
CODAP80 source language program, to inform the CODAPSO interpreter whether
or not the execution phase is to be entered following syntax analysis and to
inform the CODAP80 interpreter of the study ID of the database to be
processed.

FORM

The general form of the BEGIN command i as follows:

1) The procedure keyword BEGIN.
2) An indication of the database study ID.
3) Optionally, the keyword EXECUTE.

EXAMPLE

BEGIN SAMPLEDATA80 EXECUTE.

The above BEGIN command syntax is alerting CODAP80 that a source
language program follows. The database to be processed has the ID
SAMPLEDATA80. The appearance of the keyword EXECUTE indicates that
following syntax analysis, if no syntax errors were found, the execution
phase of the CODAPS0 interpreter is to be entered.

OUTPUT FROM PROCEDURE

Execution of the BEGIN procedure produces no printed output. The BEGIN
procedure is not a procedure in the sense that, say AVALUE or DESCRIBE are
procedures. BEGIN performs no calculations on values in the database.
BEGIN serves only to alert CODAP80 that a source language program is being
submitted.

53

53

_ _ _ _ _ _ _ _ _

BEGIN

BEGIN SYNTAX

Refer to the syntax graph of the BEGIN procedure.

BEGIN

The keyword BEGIN identifies the command.

STUDY ID

During the database creation phase of an occupational study a study ID
was assigned by the user. The assignment of a study ID takes place follow-
ing successful execution of the INPSTD database creation routine. The study
ID supplied by the user following the BEGIN command keyword is checked
against that stored on the database and, if they match, processing contin-
ues. If the study ID stored on the database and the study ID supplied by
the user in the BEGIN command do rot match, an error is indicated and proc-
essing immediately ceases.

EXECUTE

Specification of the optional keyword EXECUTE indicates to CODAPS0 that
the execution phase of the interpreter is to be entered following analysis
of the source language statements making up the CODAPSO program. The execu-
tion phase will only be entered if no syntax errors are found. If the
EXECUTE keyword is omitted, then processing will automatically cease follow-
ing syntax analysis.

PERIOD

A period (,.') must terminate the BEGIN command.

)

54.

,t 4 ' .,,
-MIR

BEGIN

BEGIN IXAMPLIS

EXAMPLE 1

BEGIN SAMPLEDATA80.
DESCRIBE ROWS TASKS FOR (G6)

NEWCOLUMN :- AVGA 'A NEW COLUMN'.
END.

The above CODAP80 source language statements would be analysed for
syntactical errors only. The fact that the optional keyword EXECUTE is not
included in the BEGIN statement will prevent the execution phase of the
CODAPSO interpreter from being entered.

EXAMPL 2

BEGIN SAMPLEDAT80 EXECUTE.

In the above BEGIN statement the study ID has been incorrectly
specified (SAMPLEDATA80 is the correct study ID). This would result in the
following error message:

STUDY ID - SAMPLEDAT80 IS INVALID. THE INTERPRETER HAS TO BE
STOPPED FOR SECURITY AND PROTECTION. PLEASE CONSULT USER
MANUAL OR CHANGE TO THE CORRECT STUDY ID.

I

'55

- I4

BEGIN

561

r1

CLUSTER

INTRODUCTION

PURPOSE

The CLUSTER procedure will perform hierarchical clustering (based on
Ward. 1963) either on any set of columns (a group) of the database measured
across any set of rows, or on any set .f rows (a module) measured across any
set of columns. In addition, the user will have the option of requesting
any one of four techniques for calculating measures of similarity between
columns or rows (see Appendix B for overlap similarity formulae).

FORM

The general form of the CLUSTER procedure is as follows:

1) The procedure keyword CLUSTER.
2) A designation of the columns or rows of the database to

be clustered.
3) A designation of which measure of similarity between

columns or rows is to be used by the procedure.
4) A minimum membership designation for the diagram display.
5) A user assigned ID to be associated with the clustered

row or column hierarchical sequence number (HSN).

EXAMPLE

BEGIN SAMPLEDATA80 EXECUTE.
SELECT COLUMNS MALES (HI=I) 'INCUMBENTS OF THE MALE SEX.
CLUSTER COLUMNS MALES FOR TASKS OVL MAXIMIZE

MALEHSN
'HSN NUMBER FROM CLUSTERING MALE INCUMBENTS'
MINMEM=2
HEADINGsOCLUSTERING MALE INCUMBENTS'.

END.

In the above example, the male incumbents are first being selected into
group MALES. The CLUSTER command is then requesting that the elements of
this group be clustered, and that the overlap calculated between the ele-
ments be measured across all the task rows on the database. The overlap
algorithm is to be absolute overlap. The HSN values generated for each
column being clustered will be assigned the ID MALEHSN. The diagram
produced will have a starting minimum group membership of 2.

OUTPUT FROM PROCEIUDI

Output from the CLUSTER procedure will consist of a group membership
report detailing the clustering process and a diagram report detailing the
clustering process pictorially. HSN values generated for the rows or
columns clustered may be added to the database for further processing by
other procedures.

57

!W

CLUSTER

CLUSTER SYNTAX

Refer to the syntax graph of the CLUSTER procedure.

CLUSTER

The keyword CLUSTER identifies the command.

DATA TYPE DESIGNATION

The keyword COLUMNS indicates that the CLUSTER procedure is to cluster
columns on the database. The keyword ROWS indicates that rows on the data-
base are to be clustered:

GROUP OR MODULE ID

If the data type designation is COLUMNS, then a group ID must follow.
If ROWS is designated, a module ID must follow. The group or module ID
specifies which columns or rows of the database are to be clustered.

FOR

The keyword FOR alerts the procedure that the following data designa-
tion represents the values of the database across which similarity between
the rows or columns being clustered is to be calculated.

MODULE OR GROUP ID

The module or group ID following the FOR keyword defines the values
across which similarity between the rows or columns being clustered is to be
calculated. If a group ID occurs before the FOR keyword, then a module ID
must follow. Conversely, if a module ID occurs before the FOR keyword, then
a group ID must follow.

OVERLAP

OVERLAP (or OVL) is one of the options available for calculating simi-
larity between columns or rows. The similarity coefficient calculated will
be the sum of the absolute overlaps between columns or rows.

DSQUA Z.

DSQUARE is one of the options available for calculating similarity
between oolumbh or rows. With this option, the similarity coefficient cal-
culated will be the sum of the squared deviations between columns or rows.

58

/t
// "* i.... . . .

CLUSTER

D

D is one of the options available for calculating similarity between
columns or rows. With this option. the similarity coefficient calculated
will be the sum of the deviations between columns or rows.

BINARY

BINARY is one of the options available for calculating similarity
between columns or rows. The similarity coefficient calculated will be a
function of the response - nonresponse profile agreement between columns or
rows on the database.

MAXIMIZE

Specifying the MAXIMIZE keyword instructs the system to cluster most
similar columns or rows first.

ID
Any valid CODAP80 ID supplied by the user to be associated with the HSN

values generated for the clustered rows or columns.

REMARK

This is a string of up to 240 characters enclosed in single quotes.
The remark will be associated with the user specified ID. A remark must be
associated with the added row or column.

MINMZM ASSIGNMENT OPERATOR CONSTANT

The user must specify the minimum membership for the diagram starter
groups. A valid example would be 1MINMEM=I0". A value less than 2 will
produce an error.

HRADIING

The keyword HEADING indicates that the following text string enclosed
in quotes is to be used as a report title.

CHARACTER STRING

Up to 10 lines of 131 characters each may comprise the title character
string.

PERIOD

A period (1-1) must end the CLUSTER statement.

59 t

_ _ _ _-_ _ _ _ _ _._ _, , -. .. .

CLUSTER

CLUSTER EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATA80 EXECUTE.
SELECT ROWS EQUIPMENT (TRACTOR JACKHAMMER BULLDOZER

POWERWENCH) 'EQUIPMENT OPERATED'.
CLUSTER COLUMNS INCUMBENTS FOR EQUIPMENT

BINARY MAXIMIZE
INCHSN 'HSN-CLUSTERING INCUMBENTS FOR EQUIP-BINARY'
MINMEM--2
HEADING=CLUSTERING INCUMBENTS FOR EQUIPMENT'.

END.

The CODAPSO syntax in example 1 of CLUSTER Is requesting that a module
of created database rows (see ADDATA example 2) be selected. Following
that, the CLUSTER command will perform a hierarchical clustering on the
incumbent columns of the database, with the similarity between incumbents
being a function of their performance-nonperformance profile (BINARY) on the
equipment rows identified by the created module EQUIPMENT. The diagram
produced will have a minimum starter group membership of 2. Had a "PRTVAR"
report been desired, the user need only to specify a PRINT command sorting
on the ID INCHSN.

EXAMPLE 2

BEGIN SAMPLEDATAS0 EXECUTE.
CLUSTER ROWS TASKS FOR INCUMBENTS

BINARY MAXIMIZE
TASKHSN 'TASK HSN - BINARY OVERLAP'
MINMEM=2
HEADING=

'CLUSTERING TASKS FOR SYSTEM COLUMNS - BINARY OVERLAP'.
END.

The above syntax is requesting that all the task rows of the database
be clustered with the overlap between task rows being measured across all
the incumbents as a function of their performance-nonperformance response
profile (binary overlap). A new column of HSN values (named TASKHSN) will

be generated for the clustered task rows. The diagram produced will have a
minimum starter group membership of 2.

60

CLUSTER

EXAMPLE 2
PRINTED OUTPUT

WOOue4

46"1

IIA

00r4 0 i

ul

~ gOinW

~4i in--

I'1

CLUSTER

EXAMPLE 2
PRINTED OUTPUT (continued)

STUDY 10 - SAWLEDATA80
CLUSTERING TASKS FOR SYSTEM COLUMNS -- BINARY OVERLAP

MIN4EMs 2

12 22
1-2 3-4

83. 83. 50. 50.

3 4
1-4

48. 1b4.

45
33. 46.

62

CLUSTER F
'P

I ii
iiI I. ii

I I
I.

I I
p Ia g ~ I I

I - I
66

C

63

I ~-~**

*1.-.

COPY

INTRODUCTION

PURPOSE

The COPY command copies any number of specified rows or columns on the
database to a punch or tape/disk output file.

FORM

The general form of the COPY command is as follows:

1) The procedure keyword COPY.
2) The keyword ROWS or COLUMNS - this keyword alerts the

system that either rows or columns of the database are to
be copied.

3) A description of which rows or columns on the databaseIare to be copied (the MROWLT or GCOLST designation).
4) A group or module designation representing the "length"

or the number of elements that are contained in the
row(s) or column(s) that is being copied.

5) An indication of whether or not an identifier is to be
punched in columns 1-12 of the output punch record.

6) An indication of whether the rows(s) or columns(s) are to
be copied to a punch or tape/disk output file.

EXAMPLE

COPY ROWS (HVARS) FOR G5 'HVARS -- G5' CARD.

The above COPY command syntax is requesting that the rows identified by
the system module HVARS (H1-H4) be copied to a punch file. Only 4 elements
of each row are io be copied due to the G5 system group identifier appearing
after the FOR keyword (G5 Is a system group generated by clustering at data-
base creation time. G5 contains 4 members: 14-17). The character string
HVARS -- G5 is to be punched in columns 1-12 of every 80 character output
record.

OUTPUT FROM PROCEDURE

Output from the COPY procedure consists of 80 character records (card
Images) sent to the punch or tape/disk logical unit. The number of. records
output by COPY is determined by the number and length of rows or columns
being copied.

64

/. / _ ___._

I,

COPY

5COPY SYNTAX

Refer to the syntax graph of the COPY procedure.

COPY

The keyword COPY identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates whether rows or columns of the
the 4atabase are to be copied.

MODULE ROW LIST

A Module Row List (MROWLT) is a list of at least one module or row ID
enclosed in parentheses. Lists of module IDs, system row lists and lists of
row IDa may all occur together in a MROWLT. If the data type designation
following the COPY command keyword is ROWS, then a MROWLT must follow. The
MROWLT serves to indicate to the COPY procedure which rows of the database
are to be copied.

GROUP COLUMN LIST

A Group Column List (GCOLST) is a list of at least one group or column
ID enclosed in parentheses. Lists of group IDs, system column lists, system
group lists and lists of column IDs may all occur together in a GCOLST. If
the data type designation following the COPY command keyword is COLUMNS,
then a GCOLST must follow. The GCOLST serves to indicate to the COPY
procedure which columns of the database are to be copied.

FOR

The FOR keyword alerts the COPY procedure to expect a followinq group
or module ID.

GROUP ID

A grqup ID is an identified aggregate of database columns. A group ID
following the FOR keyword indicates the number of elements comprising, or
length of, the row or rows being copied. If the preceding data type
designation was ROWS, then a group ID must follow the FOR keyword.

65

V,

COPY

MODULE ID

A module ID is an identified aggregate of database rows. A module ID
following the FOR keyword indicates the number of elements comprising, or
length of, the column or columns being copied. If the preceding data type
designation was COLUMNS, then a module ID must follow the FOR keyword.

CHARACTER STRING

This is a string of up to 12 characters, enclosed in single quotes.
The characters appearing between the single quotes will be punched in
columns 1-12 of every record output by the COPY procedure. If a character
string is not specified, then the system defaults to placing blanks in the
first 12 columns of the output record.

CARD OR TAPE

If the keyword CARD appears In COPY's syntax, the specified row(s) or
column(s) are to be copied to a punch logical unit. If TAPE appears, the
copied row(s) or column(s) will be sent to a tape or disk logical unit.

PERIOD

A period (C.') must end the COPY statement. i

I

66

.......................................

COPY

* I COPY EXAMPLES

EXAZIPLE I

COPY ROWS (H2-H4) FOR INCUMBENTS 'H2-H4 INCS.' CAR.,

The above COPY statement syntax is requesting that each of the rows
specified in the MROWLT (H2-H4), each of length seven Cone element in the
row for every incumbent in the database), be copied to a punch file. The
identifier H2-H4 INCS. is to be punched in columns 1-12 of each record
output from the execution of the above COPY procedure syntax.

Referring to the Sample Database, the data to be copied consists of the rows
H2, H3 and H4, each row having one element for each incumbent:

11 12 13 14 15 16 17

H2 19 23 * 41 27 53

H3 1 2 11 19 3 30 16

H4 1 5 7 2 4 6 3

Referring to example 1 of COPY's punched output, it can be seen that the
three rows have been copied to a punch file in the following configuration:

The first record (or card image) appearing with the punched deck of rows
will always be a header record. The header record will have the following
information punched on it:

CARD INFORMATION
COLUMNS PUNCHED

I - 12 The text of the character string that was supplied in
the syntax of the COPY command; H2-H4 INCS. in this
example.

16 - 28 The text string HEADER RECORD. This text string
serves only to help differentiate the header record
from the data records.

32 - 43 The study ID. In this example. SAMPLEDATA80.

46 - 50 Number of rows/columns copied. In this example, 3.

51 - 55 Number of elements (or length) of each row/column
copied. In '.his example, 7.

56 - 60 Number of records (or card images) output .for each
row/column copied. In this example, 2.

61 - 65 Total number of records (or card images) output in
copying the rows/columns. In this example. 6.

67

!&'

COPY

71 - 71 The text R or C, depending on whether it was rows or
columns that were copied. In this example, R.

The records following the header record contain the rows that were copied.
The data records after the header record have the following configuration:

CARD INFORMATION
COLUMNS PUNCHED

1 - 12 The text of the character string that was supplied in
the syntax of the COPY command; H2-H4 INCS. in this
example.

13 - 72 This field will contain up to 5 values of a
row/oolumn, punched in E format E12.5. Missing values
will appear as -0.10000E+51. If the row/column is
longer than 5 elements, it will be continued on to the
next record in columns 13-72.

73 - 73 The alphabetic character R or C, depending on if the
values being punched on the record are rows or
columns.

74 - 76 Row/Column sequence number. In example 1, row H2 was
the first row copied. It required two data records of
output to copy row H2. Since H2 was the first row
copied, the number 1 will appear in columns 74-76 of
the first two data records output.

77 - 80 Row/Column record sequence number. In example I, row
H2 required two output records to copy its full length
(7). To indicate this, a 1 and than a 2 are punched
as sequence numbers in columns 77-80 of output data
records 1 and 2.

EXAMPLE 1
COPIED OUTPUT

CAM0
-- OLUMS

S12.45678901234 6789012.567801234567890123.4 %57890123456789061 57890

H2-H4 INCS. HIAOER REORO SAh'LEDATA80 3 7 2 6 RH2-H4 MNCS. 0.1gOOOE+(M 0.23 0009+02-0.1I0000E+51 0.41000E+02 0.27000E+Ozq I I
H2.-H4 INCa. 0. 91+02-0.10000E+51 R 1 2
H2-M4 liNS. O.1I00OE+O1 0.20000E+01 0.11000E+02 0. 19000E+02 0.30O000E+OIR 2 1
H2-H4 INCS. 0.20000E+02 0.16000E+02 R 2 2
H2-H4 INCS. 0.10000E401 0.90000E+01 0.70000E401 0.20000E+01 0.40000E+OIR 3 1
H2-H4 INCS. 0.60000401 0.30000E+0 R 3 2

68

V,'-

'4!

COPY

EXAMPLE

2

BEGIN SAMPLEDATA80 EXECUTE.
COPY COLUMNS (02) FOR TASKS 'G2 TASKS' TAPE.
END.

The above CODAP80 syntax represents a complete run stream. The COPY
statement is requesting that the database columns identified by the system
cluster group ID G2 (which are, referring to the Sample Database, [4 and 15)
be copied to a tape/disk file. Each of the copied columns will be five
elements long (one for each row identified by the system reserved keyword
TASKS). The character string G2 TASKS will be placed in columns 1-12 of
each column output record.

EXAMPLE 2
COPIED OUTPUT

CAM
- 00LtJWS

I 1 2 3 4 5 6 7 8
- 12345678901234567890123456789012345678901234567890123456789012345678901234567890

G2 TASKS FADER REMO SAW..1ATAS0 2 5 1 2 C
G2 TASKS 0.11111E+02 0.444441E+02-0.1000E+51 0.222221.02 0.22222E+02C I I
G2 TASKS 0.23529E402 0.23529E402 0.17647E102-0.10000E 51 0.35294E402C 2 I

EXAMPLE 3

BEGIN SAMPLEDATA80 EXECUTE.
COPY ROWS (HVARS Si) FOR G4 TAPE.
END.

The above COPY syntax is requesting that the rows identified in the
MROWLT (HVARS, which consists of the rows Hl-H4, plus the row S1) be copied
to a tape/disk file. Each of these rows will be G4 elements long (G4 is a
system cluster group Identifying the database columns I, 12 and 13). Since
a character string was not specified, columns 1-12 of each row output record
will be blank.

COPIED OUTPUT

CAMO
-- 00LWU

1 1 2 3 4 5 6 7 8
-, 1234567890123456789012341678901234567690123456789012345678o 12345678901234567890

HDAM SAMWIEDATAO 5 3 I 5 R
0.20000401 0.100OE401 0.20000E+01 R I 1
0.190 402 0.230006402-0. 100006451 R 2 1
0. 1000I 01 0.200001[401 0.110006402 R 3 1

0.100001+401 0.00001+01 0.'0001+01 R 4 I
-0. I000 ,-.loo-0.10 +I-.I000 1 R 5 1

t
69

_ _ _ _t

COPY

70p

1It I.

CORR

I CORR

INTRODUCTION

PURPOSE

The CORR command calculates Pearson product-moment correlations of
specified rows or columns of the database.

FORM

The general fQrm of the CORR command is as follows:

1) The procedure keyword CORR.
2) The keyword ROWS or COLUMNS - this keyword alerts the

system that either rows or columns of the database are to
be correlated.

3) A description of which rows or columns of the database
are to be correlated.

4) A group or module designation representing the number of
observations in the correlation.

5) A description of what is to be printed as a title at the
top of the produced report.

EXAMPLE

CORR ROWS (Hl. H2, H3) FOR G6
HEADING: UEXAMPLE CORRELATION SETUP'.

The above CORR command syntax is requesting that the rows Hl, H2, H3
be correlated across the columns identified by the cluster group ID G6
(which is, referring to the sample database, all of the incumbents).

OUTPUT FROM PROCEDUREI Printed output generated from execution of the CORR command consists of
a matrix of Pearson Product-Moment correlations of those rows or columns
specified in the CORR command's syntax. Printed below each correlation will
be the number of pairs of observations that went into the correlation. If
the keyword NOREMARKS is not specified, the remarks associated with the rows
or columns being correlated will be printed at the beginning of the output.

71

CORR

CORR SYNTAX ,

Refer to the syntax graph of the CORR procedure.

CORE

The keyword CORR identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates whether rows or columns of the

database are to be correlated.

MODULE ROW LIST

A Module Row List (MROWLT) is a list of at least one module or row ID
enclosed in parentheses. Lists of module IDs, system row lists and lists of
row IDa may all occur together in a MROWLT. If the data type designation
following the CORE command keyword is ROWS, then a MROWLT must follow. The
MROWLT serves to indicate to the CORE procedure which rows of the database
are to be correlated.

GROUP COLUMN LIST

A Group Column List (GCOLST) is a list of at least one group or column
ID enclosed in parentheses. Lists of group IDs, system column lists and
lists of column IDs may all occur together in a GCOLST. If the data type
designation following the CORE command keyword is COLUMNS, then a GCOLST
must follow. The GCOLST serves to indicate to the CORE procedure which
columns of the database are to be correlated.

IFOR
The FOR keyword alerts the CORR procedure to expect a following group

or module ID.

GROUP ID

A group ID is an identified aggregate of database columns. A group ID
following the FOR keyword indicates the columns of the database the rows are
to be orrlated across. If the preceeding data type designation was ROWS,
than . group ID must follow the FOR keyword.

72
72"

A,. .-.

I I

CORR

, MODULE ID

A module ID is an identified aggregate of database rows. A module ID
following the FOR keyword indicates the rows of the database the columns are
to be correlated across. If the preceeding data type designation was
COLUMNS, then a module ID must follow the.-FOR keyword.

PEARSON

The keyword PEARSON indicates that Pearson product moment correlations
are to be calculated. This keyword is optional and need not be specified.

NOREMAR.KS

Specifying NOREMARKS indicates that the comments associated with the
rows or columns that are being correlated are not to be printed at the
beginning of the CORR procedures output. If this keyword is omitted,
variable comments will be printed.

READING

The keyword HEADING serves to indicate that the following string is to
be used as a report title.

ASSIGNMENT OPERATOR

Either the symbols ,:0 or ':=-. Either of these symbols may be used to
separate the HEADING keyword from the title character string.

CHARACTER STRING

Up to 10 lines of 131 characters each may comprise the character
string(s) that make up the report title of the CORR command. Each title
line of up to 131 characters is enclosed in single quotes, with the
beginning of a new title line indicated by a blank and another line enclosed
in single quotes.

PERIOD

A period ('.') must end the CORR statement.

73

17- .

p
CORR

CORR EXAMPLES

EXAMPLE 1

CORR ROWS (HI,H2,H3) FOR INCUMBENTS
HEADING: ='EXAMPLE 1'
'CORRELATION MATRIX OF ROW VARIABLES HI, H2, & H3'
'ACROSS ALL INCUMBENTS'.

The above CORR statement syntax is requesting that the rows HI, H2 and
H3 be correlated across all incumbents in the database (the group ID
INCUMBENTS is a CODAPSO reserved keyword).

EXAMPLE 1
PRINTED OUTPUT

PAGE - 1

STUDY ID - SAMPLEDATA80
EXAMPLE 1

CORRELATION MATRIX OF ROW VARIABLES Hi, H2 & H3
ACROSS ALL INCUMBENTS

ROW/COLUMN ID ROW/COLUMN REMARK

H - i SEX
H - 2 AGE
H - 3 YEAR ON JOB

PAGE - 2

STUDY ID - SAMPLEDATA80

CORRELATION COEFFICIENTS /N UMBER OF OBSERVATIONS
EXAMPLE 1

CORRELATION MATRIX OF ROW VARIABLES Hi, H2 & H13
ACROSS ALL INCUMBENTS

H-I H-2 H-3

H - 1 1,00000 -0.53921 -0.36364
7 5 7

H - 2 -0.53921 1.00000 0.98915
5 5 5 I

H - 3 -0.36364 -0.98915 1.00000
7 5 7

74 1tj

CORR

B EXAMPLE 2

CORR COLUMNS (G4) FOR TASKS PEARSON NOREMARKS
HEADING:'EXAMPLE 2'

'CORRELATION MATRIX OF COLUMNS CONTAINED IN'
'CLUSTER GROUP 4 (G4) - Il. 12, & 13'
'CALCULATED ACROSS ALL TASKS'.

The above CORR statement syntax is requesting that the columns
identified by the cluster group ID G4 (11, 12, & 13) be correlated across
all tasks in the study (the module ID TASKS is a CODAP80 reserved keyword).
The keyword NOREMARKS has been specified.

EXAMPLE 2
PRINTED OUTPUT

PAGE - I

STUDY ID - SAMPLEDATAS0

CORRELATION COEFFICIENTS/NUMBER OF OBSERVATIONS
EXAMPLE 2

CORRELATION MATRIX OF COLUMNS CONTAINED IN
CLUSTER GROUP 4 (G4) -- 11, 12, a 13

CALCULATED ACROSS ALL TASKS

I-I 1-2 1-3

I - 1 1.00000 0.00410 -0.42675
5 5 5

I - 2 0.00410 1.00000 0.67732
5 5 5

1 3 -0.42675 0.67732 1.00000

5 5 7

(. i

75

2' J7

CORR

I

ja Ii
ii

II~ II~ I

3U I

I.)

-, 76

I-, __

A

~ ~4V~k ~

CREATE

INTRODUCTION

PURPOSE

The CREATE procedure is used to generate new rows or columns on the
database. The new rows or columns are calculated from existing information
that resides on the database.

FORK

The general form of the CREATE procedure is as follows:

1) The procedure keyword CREATE.
2) A keyword ROW or COLUMN designating what is to be

created.
3) A group or module designation indicating the "length" or

number of observations the created row or column will
have.

4) A designation of the mathematical relationship between
the new row or column being created and previously exist-
Ing rows or columns.

5) An Indication of whether the created data is to
permanently reside on the database.

6) A remark followed by either a period or semicolon.

EXAMPLE

BEGIN SAMPLEDATA80 EXECUTE.
CREATE ROW FOR INCUMBENTS

MTHSON JOB = H3/12 'NUMBER OF MONTHS ON JOB'.
END.

The above CREATE syntax will calculate, for every incumbent on the
database, the number of years theyve been on the job (H3. see Sample
Database) divided by 12. The new row will be named MTHS ONJOB and will be
permanently saved on the database.

OUTPUT FORM PROCEDURE

Execution of the CREATE procedure produces no printed output. As a
result of its execution, the CREATE procedure will optionally save a new row
or column on the database.

77

- ,*

CREATE

CREATE SYNTAX

Refer to the syntax graph of the CREATE procedure.

-CREATE

The keyword CREATE identifies the procedure.

DATA TYPE DESIGNATION

The keyword ROW or COLUMN indicates whether a row or column is to be
created.

FOR

The FOR keyword alerts the CREATE procedure to expect a following group
or module ID.

GROUP ID

A group ID is a defined aggregate of database columns. If the data
type designation preceding the FOR keyword was ROW, then a group ID must
follow. The group ID serves to indicate -the "length" or number of elements
the created row will have.

MODULE ID

A module ID is a defined aggregate of database rows. If the data type
designation preceding the FOR keyword was COLUMN, then a module ID must
follow. The module ID serves to indicate the "length" or number of elements
the created column will have.

FULL ASSIGNMENT CLAUSE

A full assignment clause defines the mathematical relationship between
existing data to be used in creating a new row or column. Data types may
not be mixed; that is, if a row is being created then the existing data must
be rows also. Relationships may be defined through the use of IF-THEN-ELSE
constructs (see CREATE examples 4 & 5) or arithmetic expressions (see CREATE
examples 1, 2, & 3). Acceptable arithmetic operators are addition (+), sub-
traction (-), division (), multiplication (*) and exponentiation (**).

NOSAVE

Speolfication of the optional keyword NOSAVE indicates that the created
row or column is to exist only for the duration of the current computer
run.

78

CREATE

, REMARK

A remark is a string of up to 240 characters, enclosed in single
quotes. The remark, which must appear, will be associated with the new ID
that was generated in the full assignment clause.

PERIOD OR SEMICOLON

A period must end the syntax of the CREATE procedure. If syntax is
terminated with a semicolon, specification of another series of CREATE syn-
tax may begin without having to repeat the procedure keyword (see CREATE
example 3).

7

79

iA

CREATE

CREATE EXAMPLES

EXAMPLE 1

-BEGIN SAMPLEDATA80 EXECUTE;
CREATE ROW FOR INCUMBENTS

H2 SQUARED = H2*"2 'AGE SQUARED'.
PRINT UOLUMNS (INCUMBENTS) NOREMARKS/

ROWS (H2 H2 SQUARED)
HEADING = 'FRIINT OF AGE & AGE**2'.

END.

The CREATE procedure syntax In example 1 will result in a new row
(named H2 SQUARED) being permanently added to the database. The new row
will be 7 "lements long (1 for each incumbent). The relevant calculations
are displayed below:

I1 12 13 14 15 16 17
H2 1 2 T' _ 4 7 TS

H2_SQUARED 361 529 . 1681 729 2809

The PRINT procedure syntax would produce a printed listing of the data
values just processed by the CREATE procedure.

EXAMPLE 2

BEGIN SAMPLEDATA80 EXECUTE.
DESCRIBE ROWS TASKS FOR (MALES FEMALES)

PCNTPERF = PCNT '% PERFORMING TASKS'.
CREATE COLUMN FOR TASKS

DIFFPERF = PCNTPERF1 - PCNTPERF2
'DIFFERENCE IN % PERFORMING TASKS - SEX'.

END.

The DESCRIBE procedure in the above run sequence is "describing" the
tasks of the male and female incumbents in the database. It is assumed that
the group IDs MALES and FEMALES were selected and saved during an earlier
run stream (see SELECT example 2). Two columns (named PCNTPERF1 and
PCNTPERF2) will be created from the execution of the DESCRIBE syntax. The
CREATE procedure is then calculating the difference between the two columns
and generating the result as a column named DIFFPERF. The column DIFFPERF
will have 5 elements (1 per task). The syntax appearing in example 2 is
often used as an intermediate step in the generation of a group difference
description. The relevant calculations of example 2 appear below:

PCNTPERF1 PCNTPERF2 DIFFPERF
TI 80.00 50.00 30.00
T2 100.00 50.00 50.00
T3 60.00 100.00 -40.00
T4 40.00 100.00 -60.00
TS 40.00 50.00 -10.00

80

CREATE

SEXAMPLE 3

BEGIN SAMPLEDATA80 EXECUTE.
INPUT COLUMN FOR TASKS

TASKDIFF 'TASK DIFFICULTY'
FORMAT '(5F1.0)'.

CREATE COLUMN FOR TASKS
TASKDIFF10 = TASKDIFF + 10
'TASK DIFFICULTY PLUS 10';

COLUMN FOR TASKS
IWEIGHTED = I1 * TASKDIFF10
'INCUMBENT I WEIGHTED BY TASKDIFF10'.

END.
15296

The INPUT syntax in example 3 is requesting that a column be added to
the database. The column will consist of task difficulty indices and will
be named TASKDIFF (the values to be added appear directly after the END
statement). The CREATE syntax immediately following the INPUT procedure
will add 10 to every value of TASKDIFF and in so doing generate a column
named TASKDIFF10. Column TASKDIFF10 will then be used in the next execu-
tion of the CREATE procedure (without having to repeat the procedure key-
word due to the trailing semicolon) to weight the values in column 11,
resulting in anothar column named I1WEIGHTED. Relevant statistics appear
below:

I1 TASKDIFF TASKDIFFIO IIWEIGHTEDTI 'a 1 11 70-4

T2 9 5 15 135
T3 9 2 12 108
T4 18 9 19 342
T5 0 6 16

EXAMPLE 4

BEGIN SAMPLEDATA80 EXECUTE.
CREATE ROW FOR G6

IF T1--0 THEN NEWROW = 1 ELSE NEWROW = Tl*2
'ROW BASED ON TI'.• END.•

The CREATE syntax in example 4 illustrates the use of an IF-THEN-ELSE
construct in a full assignment clause. The result of the syntax is to
'create a new row (named NEWROW) that will have an element for every incum-
bent on the database (as indicated by the systm cluster group G6). If the
corresponding value of T1 is zero, then NEWROW will equal 1. If the value
of T1 is anything other than zero, then NEWROW will equal T1 multiplied by
2. Relevant calculations appear below:

I1 12 13 14 15 16 17

_ NEWROW 128 22 1 22 48 72 1

-71

CREATE

EXAMCPLE 5 4

BEGIN SAMPLEDATA80 EXECUTE.
CREATE ROW FOR INCUMBENTS

IF H3 > 30 THEN TIME-LEVEL = 4
IF H3 > 20 THEN TIME LEVEL = 3
IF H3 > 10 THEN TIME7LEVEL = 2

ELSE TIMELEVEL Z NOSAVE
'1=1-10 YEARS; 2=11-20; 3=21-30; 4=>30'.

VARSUM ROWS (TIME LEVEL) FOR (INCUMBENTS)
COUNT PERCENT

-HEAD[NG = 'DISTRIBUTION OF TIMELEVEL'.
END.

The CREATE syntax in example.5 is illustrating the means by which
values representing intervals may be generated. The effect of the syntax is
to create a new row (n-amed TIME LEVEL) with a value for every incumbent.
The appearance of the NOSAVE keyword indicates that TIME-LEVEL will exist
only for the duration of the job. The VARSUM procedure will generate a
report displaying the distribution of TIMELEVEL across all incumbents.
Relevant statistics appear below:

11 12 13 14 15 IS 17
H3 1i 2 TI T9 -3 TO T

TIME LEVEL 1 1 2 2 1 3 2

82

- '~w:~~-VIP

CREATE

I8

w 71*IM
T"I'm P *N

DESCRIBE

INTRODUCTION

PURPOSE

The DESCRIBE procedure will compute statistics on any specified
aggregate of database rows or columns (a module or group) measured across
one or more specified aggregates of database columns or rows (a group or
module list). In particular, DESCRIBE may be used to generate statistical
summarizations (such as percent performing, average, etc.) of incumbent
responses to historical, task or secondary questions.

In addition to DESCRIBE's ability to calculate statistics on database
rows measured across columns (the usual type of processing when generating
occupational Job descriptions), the procedure may also be used to "describe"
database columns measured across rows. This capability gives DESCRIBE the
feature of symmetry, in that any processing performed on rows across columns
may also be performed on columns across rows.

FORM

The general form of the DESCRIBE command is as follows:

1) The procedure keyword DESCRIBE.
2) The keyword ROWS or COLUMNS - this keyword alerts the

system that either rows or columns of the database are to
be "described".

3) An indication of which rows (in the form of a module ID)
or columns (in the form of a group ID) of the database
are to be "described".

4) A description of at least one column or row aggregate
(specified in the form of a group or module list) across
which row or column statistics are to be calculated.

5) A new ID. The new ID will have a numeric value, ranging
from 1 to the number of group or modulo ID specified in
4, appended to it by the system. If only one column or
row aggregate (a group or module ID) is specified in 4,
then a numeric value is not appended to the new ID.

6) One of the statistical functions: AVOP, AVGA, STDP,
STDA, PCNT, SUM or N. The function specified defines the
type of statistic DESCRIBE will compute on the rows or
columns specified in 3.

7) Optionally, the keyword NOSAVE.
8) Descriptive text (a remark) supplied by the user that

will be be associated with the new column or row IDs
added to the database.

9) A period or a semicolon. Specification of a period ends I
the DESCRIBE command. If. instead, a semicolon is speci-)
fled, a different statistical. funotion may be defined for
the same database subset by repeating 5-9.

84

Six!" -I

DESCRIBE

j EXAMPLE

DESCRIBE ROWS TASKS FOR (INCUMBENTS)
INCNUM := N

'NUMBER RESPONDING TO TASKS -- ACROSS INCUMBENTS'.

The above DESCRIBE command syntax will calculate, for every task row
(as defined by the CODAPS0 system module TASKS), the number of non-zero
responses across all incumbent columns in the database (as defined by the
CODAPSO system group INCUMBENTS). The same effect would have been achieved
had the user specified the system cluster group G6. Resulting from the
execution of the above syntax, a column, five elements long (one per task)
and containing the number of non-zero responses to each of the task rows
across incumbents, will be permanently saved on the database. The column
will be assigned the ID INCNUM as well as the descriptive remark NUMBER
RESPONDING TO TASKS -- ACROSS INCUMBENTS for future reference.

OUTPUT FROM PROCEDURE

Execution of the DESCRIBE procedure produces no printed output. For
every aggregate of database columns or rows (groups or modules) specified in
the group or module list (which defines that part of the database across
which caiculations are to be performed), DESCRIBE will add a new column or
row to the database. A listing of the new created row or column may be
produced by appropriately referencing the ID in the syntax of the PRINT
procedure (see example 3 of PRINT).

i'

85

"_ _ _ __/_ _ _ _ _7T

I

DESCRIBE

DESCRIBE SYNTAX
D R

Refer to the syntax graph of the DESCRIBE procedure.

DESCRIBE

The keyword DESCRIBE identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates to the system whether it is to be
rows or columns of the database that are to be "described".

MODULE ID

A module ID is an identified aggregate of database rows. If the
preceding data type designation was ROWS, then a module ID must follow. The
module ID may be one previously defined through the use of the SELECT
procedure, or may be one of the CODAPSO system modules HVARS, TVARS, TAS KS
or SVARS. The module ID specification serves to Identify to the DESCRIBE
procedure the database rows uoon which statistics are to be calculated.

GROUP ID

A group ID is an identified aggregate of database columns. If the
preceding data type designation was COLUMNS, then a group ID must follow.
The group ID may be one previously defined through the use of the SELECT
procedure, one of the CODAPSO system cluster groups (as defined at database
creation timebythe OGROUP routine) orthe CODAPS0 system group INCUMBENTS.
The group ID specification serves to identify to the DESCRIBE procedure the
database columns uvon which statistics are to be calculated.

FOR

The FOR keyword alerts the DESCRIBE procedure to expect a following
group or module list.

GROUP LIST

A group list is a list of at least one group ID enclosed id
parentheses. Created group IDs (such as would be generated by SELECT),
CODAPSO system group IDa (such as the keywords INCUMBENTS or INCS) and
system cluster groups (such as 01-03, as defined by clustering at database
creation time) may all appear in a group list. Each group ID specified in
the group list represents a different aggregate of database columns across

p. .-....

<-___-_.__ ,. -

DESCRIBE

which statistics for a row are to be calculated. If the preceding data type
designation was ROWS, then a group list specification must follow the FORIkeyword.

MODULE LOST

A module list is a list of at least one module ID enclosed in paren-
theses. Created module IDa (such as would be generated by SELECT) and
CODAPS0 system modules (such as HVARS, TVARS, TASKS and SVARS) may all
appear in a module list. Each module ID specified in the module list repre-
sents a different aggregate of database rows across which statistics for a
column are to be calculated. If the preceding data type designation was
COLUMNS, then a module list specification must follow the FOR keyword.

ID

A user supplied "seed" ID. Any valid CODAPS0 ID may be specified. The
new ID will have a numeric value, ranging from 1 to the number of group or
module IDa appearing in the group or module list, appended to it by the
system (unless, of course, only a single aggregate ID appeared in the group
or module list). The user must be careful not to specify an ID that will
conflict with one previously defined in the database. The user must also
take care to specify an ID that, when the numeric value is appended to it by
the system, is not longer than 12 characters.

ASSIGNMENT OPERATOR

Either of the symbols ' or ':-. Either of these symbols may be used
to separate the seed ID from the statistical function that follows.

STATISTICAL FUNCTIONS

The statistical function specified defines the type of statistical
operation performed by DESCRIBE on the rows or columns associated with the
module or group ID designated in the syntax. The seven acceptable
statistical function keywords are as follows:

AVGP - Average, excluding missing values.
*AVGA - Average, including missing values.
STDP - Standard deviation, excluding missing values.

*STDA - Standard deviation, including missing values.
*PCNT - Percentage of non-missing values.

SUM - Sum of non-missing values. .i
*N - Number of non-missing values.

*If a calculation is being performed on task rows across incumbent
oclumns or on incumbent columns across task rows, zeros are interpreted as
missing.

.
87

Al. -

TIORMN F

DESCRIBE

NOSAVE

Specification of the optional keyword NOSAVE indicates that any new
rows or columns generated through the execution of the DESCRIBE procedure
are not to be permanently saved for future reference.

REMARK

This is a string of up to 240 characters, enclosed in single quotes.
The remark will be associated with the new row or column IDs generated. A
remark must be associated with the new IDs.

PERIOD OR SEMICOLON

A period (.') must end the syntax of the DESCRIBE procedure. If the
user desires to caculate more than one type of statistic on the same
database subset, the command syntax may be terminated with a semicolon,
followed by the specification of a new ID, statistical function and a remark
(see DESCRIBE example 1).

pA

)

88i

i ss I

DESCRIBE

t DESCRIBE EXA1MPLS

EXAMPLE 1

DESCRIBE ROWS TASKS FOR (G6)
G6AVGA := AVGA

'AVERAGE (ALL) PER TASK--G61;
G6AVGP := AVGP

'AVERAGE (PERFORMING) PER TASK--G6e.

The above DESCRIBE command syntax will calculate, for each task row on
the dt :abase (as designated by the CODAPS0 system module TASKS), the average
including missing values (AVGA) and the average excluding missing values
(AVOP) across all the incumbent columns of the database (11-17, as indicated
by the system cluster group G6). Execution of the abovi syntax will result
in two columns (named G6AVGA and G6AVUP), each five elements long (one per
task), being permanently added to the database. The remark AVERAGE (ALL)
PER TASK-G6 will be associated with the new created column G6AVGA and the
remark AVERAGE (PERFORMING) PERTASK--G6 willbe assoclated with the second
created column G6AVGP.

The values that will be calculated for the two created columns are as
follows (see Sample Database):

G6AVGA (1) = (64+11+0+11+24+36+0)/7 = 20.86

G6AVGA (2) = (9+11+0+44+24+64+43)/7 = 27.86

G6AVGA (3) = (9+22+20+0+18+0+57)/7 = 18.00

G6AVGA (4) = (18+56+50+22+0+0+0)/7 = 20.86

G6AVGA (5) = (0+0+30+22+35+0+0)/7 = 12.43

G6AVGP (1) = (64+11+11+24+36)/5 = 29.20

G6AVGP (2) a (9+11+44+24+64+43)/6 = 32.50

G6AVGP (3) - (9+22+20+18+57)/5 = 25.20

GOAVGP (4) a (18+5650"22)/4 a 36.50

GOAVGP (5) = (30+22+35)13 a 29.00

Y0
r8

: e9 +

DESCRIBE

EXAMPLE 2

BEGIN SAMPLEDATA80 EXECUTE.
SELECT ROWS SHAKEDOWN (T2-T3)

'SHAKE DOWN TASK MODULE'.
DESCRIBE ROWS SHAKEDOWN FOR (G2-G4)

G2G4PCNT := PCNT
'PERCENT PERFORMING-MODULE SHAKEDOWN--CLUSTERS G2-G4'.

END.

The above syntax specification represents a complete run stream in the
CODAP8O language. The SELECT command is "selecting" two-task rows (T2 and
T3) to be in module SHAKEDOWN. The DESCRIBE command syntax will calculate,
for each row defined to be in module SHAKEDOWN. the percentage of
non-missing values (PCNT) across each of the database column aggregates
contained in the CODAPS0 system cluster groups G2, G3 and G4 (G2--14, 15;
G3-14, I5, 16; G4--I1, 12, 13). Execution of the DESCRIBE syntax will
result in three columns (named G2G4PCNT1, .G2G4PCNT2 and G2G4PCNT3
respectively; the terminating numeral being appended to coincide with the
number of group IDs specified in the group list), each two elements long
(one for each row defined to be in module SHAKEDOWN), being permanently
added to the database. The remark PERCENT PERFORMING--MODULE
SHAKEDOWN -CLUSTERS G2-G4 will be associated with each of the three created
columns. The values that will be calculated for the three created columns
are as follows:

G2G4PCNT1 G2G4PCNT2 G2G4PCNT3

T2 100.00 100.00 66.67
T3 50.00 33.33 100.00

EXAMPLE 3

DESCRIBE COLUMNS G6 FOR (TASKS)
G6NTASKS := N
'NUMBER OF TASKS RESPONDED FOR EACH INCUMBENT'.

The above syntax illustrates the DESCRIBE procedure's symmetric

capability. Examples 1 and 2 requested that the procedure "describe" rows

measured .across columns. Example 3 is requesting that the procedure
"describe" columns measured across rows. Specifically, the above DESCRIBE
command syntax will calculate, for every incumbent column on the database
(as designated by the CODAPSO system cluster group G6), the number of
non-missing values across all the task rows of the database (Tl-T5, as
indicated by the CODAPSO system module TASKS). Execution of the syntax in
example 3 will result in one row being permanently added to the database
(the row will be named G6NTASKS and will be seven elements long).

The values that will be calculated for the created row are as follows:

Ii 12 13 I S 16 17

G6NTASKS 4 4 3 4 4 2 2

90

* - * .tA
/ ~~~~~ ~~ 4 VT ..." i"

DESCRIBE

mas
.

.

0 0

II
:z 0

Ic

£9

AD-A144 125 COMPREHENSIVE OCCUPA1IONAL DATA ANALYSIS PROGRAMS /
(CODAPOI USER'S MANUALIU) NAVY OCCUPATIONAL
DEVELOPMENT AND ANALYSIS CENTER WASHINGTON DC JAN 84

UNCLASSIFIED DOD/DF-84/ODGA FIG 912 NLIIIIIIIIIIIIl
IIIIIIIIIIIIIl
IIIIIIIIIIIIIl
llllllllllllmu

IIIIIIIIIIIIII

ilii

II"1. 25 111=4 1.4

MICROCOPy RESOLUTION TEST CHART

NAIONAL OVUi OF $STANDARDS_-1943-
A

mV

END

INTRODUCTION

PURPOSE

The purpose of the END command is to delineate the end of a CODAP80
source language program. The END command occurs only once and is always the
last statement in any CODAPS0 source language program.

FORM

The general form of the END statement is as follows:

1) The procedure keyword END.
2) A period ('.').

EXAMPLE

BEGIN SAMPLEDATAS0 EXECUTE.
SELECT ROWS ALLSYSROWS (Hl-H4. Tl-T5, Sl-S5)

'ALL SYSTEM ROWS ON DATABASE.
END.

The above CODAP80 source language statements represent a complete run
stream that would be submitted to the computer. The example illustrates the
recommended form and placement of the END command.

OUTPUT FROM PROCEDURE

Execution of the END procedure produces no printed output. The END
procedure is not a procedure in the sense that, say CLUSTER or STANDARD are
procedures. END performs no calculations on values in the database. END
serves only to terminate a CODAPS0 source language program.

I

92 4

_ _ _ _ _ 7

END

I END SYNTAX

Refer to the syntax graph of the END procedure.

END

The keyword END identifies the command.

PERIOD

A period (1.1) must terminate the END command.

A 93

END

END EXAMPLES)

EXAMPLE 1

BEGIN SAMPLEDATAS0 EXECUTE.
CORR ROWS -(Sl-SS) 'for G6

HEADING = 'CORRELATION OF S1-S5'
'ACROSS ALL INCUMBENTS'.

END.

The above source statements represent a complete run stream in the
CODAPSO language. Example 1 illustrates the recommended form and placement
of the END command.

EXAMPLE 2

BEGIN SAMPLEDATAS0 EXECUTE.
PRINT COLUMNS (G6) NOREMARKS / ROWS (HI)

HEADING = 'EXAMPLE OF PRINT'.
END

Example 2 illustrates a common error in the speclfiction of the END
command. The user has neglected to terminate the END command with a period.
CODAPO will alert the user to this fact by printing the following error
message:

UNEXPECTED TERMINATION OF CODAP80 SOURCE PROGRAM FOUND. END
COMMAND MUST BE FOLLOWED BY A PERIOD.

1met
-)

94

ENDp

95

INPUT

INTRODUCTION

PURPOSE

The INPUT procedure adds a new row or column to the database. The
INPUT procedure is very useful for adding information to the database that
was not available when the database was originally created. For example.
suppose you want to classify the incumbents of a study into two categories--
those who have had training and those who have not had training. By adding
a new row consisting of a binary indication of training (1 if they've had
training, and 0 if they have not), statistics may then be calculated across
incumbents as a function of this.

FORM

The general form of the INPUT statement is as follows:

1) The procedure keyword INPUT.
2) A data type designation specifying whether a row or a

column is being added to the database.
3) A designation of the aggregate of database columns the

row is being added for, or a designation of the aggregate
of database base rows the column is being added for.

4) A user supplied valid CODAP80 ID associated with the
added row or column.

5) A user supplied FORTRAN format for reading-in the row or
column values to be added to the database.

6) Options controlling the permanence of the added ID, and
missing value considerations.

EXAMPLE

BEGIN SAMPLEDATA80 EXECUTE.
INPUT ROW FOR G6 TRAINING

'NEW ROW NAMED TRAINING'
FORMAT '(7F1.0).

END.
1110101

In this example, a new row named TRAINING is being added to the
database. There will be a value of TRAINING for every column associated
with the group ID G6 (I1-I7, see Sample Database). The string NEW ROW
NAMED TRAINING, enclosed in single quotes, is the remark to be associated
with the row named TRAINING. The keyword FORMAT signifies that the row ID
TRAINING is to be read with the following format specification (in this
case 711.0, indicating that the row ID TRAINING consists of 7 one digit)

96

. . I- . . 14i , -

INPUT

numbers) that is enclosed in single quotes and parentheses. For an
explanation of format specifications (such as 7F1.0) consult any intro-
ductory FORTRAN text.

OUTPUT FROM PROCEDURE

Execution of the INPUT procedure produces no printed output. The
result of executing the INPUT procedure will be a new row or column
optionally added to the database.

I97
C

p

k?

INPUT

INPUT SYNTAX

Refer to the syntax graph of the INPUT procedure.

INPUT

The keyword INPUT identifies the command.

DATA TYPE DESIGNATION

The keyword ROW or COLUMN indicates whether the data being added is a
conceptual row or column of the database.

FOR

The FOR keyword alerts the INPUT procedure to expect a following group
or module ID.

GROUP ID

A group ID is an identified aggregate of database columns. If the
preceding data type designation was ROW, then a group ID must follow the FOR
keyword. The group ID may be one previously defined through the use of the
SELECT procedure, one of the CODAPSO system cluster groups (as defined at
database creation time by the OGROUP routine) or the CODAPS0 system group
INCUMBENTS. The group ID specification serves to indicate to the INPUT
procedure the database columns for which the new row is being added. The
group ID also serves to indicate the "length" or number of elements the
added row will have.

MODULE ID

A module ID is an identified aggregate of database rows. If the

preceding data type designation was COLUMN, then a module ID must follow the
FOR keyword. The module ID may be one previously defined thr6E the use of
the SELECT procedure, or may be one of the CODAPS0 system modules HVARS,
TVARS, TASKS or SVARS. The module ID specification serves to indicate to
the INPUT procedure the database rows for which the new column is being
added. The module ID also serves to indicate the "length" or number of
elements the added column will have.

ID

This is any valid CODAPSO ID supplied by the user that will be
associated with the added row or column.

98

pp

INPUT

D NOSAVE

Specification of the optional keyword NOSAVE indicates that the added
row or column will exist on the database only for the duration of the
computer run.

REMARK

This is a string of up to 240 characters enclosed in single quotes.
The remark will be associated with the added row or column. A remark must
be associated with the added row or column.

MISSING
ASSIGNMENT OPERATOR
CONSTANT

Some of the elements of the row or column to be added to the database
may be missing (as opposed to being zero or blank). To signal the INPUT
procedure that a given value is missing, choose a unique integer constant as
the identifier in the missing option. For example, suppose the user was
adding a new row to the database, and one of its five elements was missingf4
By indicating a unique integer constant in the missing option (let's say
99), the INPUT procedure would then know that any values of 99 that were
input as the new row should be set to missing (see INPUT example 1).

FORMAT

The FORMAT keyword serves to indicate to the INPUT procedure that the
following string enclosed in single quotes is to be used as the input format
for reading-in the values of the row or column to be added.

FORMAT SPECIFICATION

The format specification for the INPUT procedure may be any valid 1966
Ansi Standard FORTRAN format in parentheses, enclosed in single quotes. The
format will be used by the INPUT procedure to read-in the values of the
added row or column. The place in the input stream of a CODAPS0 source
language program where the values of the row or column to be added are to
appear is directly after the terminating END statement (see INPUT examples 1
and 2). For an explanation of FORTRAN formats, consult any introductory
FORTRAN text.

PERIOD

A period ('.') must end the INPUT statement.

(-

99

INPUT

INPUT EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATA80 EXECUTE.
INPUT ROW FOR G6 RACE

'RACIAL BACKGROUND OF INCUMBENTS'
MISSING := 9 FORMAT '(7F1.0).

END.
1192319

The above syntax represents a complete run stream in the CODAP80
language. The INPUT syntax is requesting that a new row (to be named RACE)
be added to the database. The row will have an element for every incumbent
column on the database (as defined by the CODAP80 system cluster group G6)
and will be associated with the remark RACIAL BACKGROUND OF INCUMBENTS.
Two of the seven race values are missing and the syntax is alerting the
INPUT procedure to set to missing any values of the row to be added that
equal 9. The format specification indicates that the added row consists of
seven !-digit numbers.

EXAMPLE 2

BEGIN SAMPLEDATA80 EXECUTE.

INPUT COLUMN FOR TASKS RANKING
'ALTERNATE RANKING FOR TASKS'
FORMAT '(5F1.0)'.

END.
21453

The above syntax represents a complete run stream in the CODAP8O
language. The INPUT syntax is requesting that a new column (to be named
RANKING) be added to the database. The new column will have an element for
every task row on the database (as defined by the CODAPS0 system module
TASKS) and will be associated with the remark ALTERNATE RANKING FOR TASKS.
The format specification indicates that the added column consists of five
1-digit numbers.

The rationale for the operation shown in example 2 might be that the
user wishes to see the tasks on a database sorted on some arbitrary
dimension. After the column of rankings was added, the user could then have
the print procedure display the tasks, sorted by the newly added column.

100

- I

INPUT

y

I
z

1. .11.
I-

'I I
I-
@2

iiI

(

101

-- -i~tl.-j,~-~ -

Ii

PRINT

INTRODUCTION

PURPOSE

The PRINT procedure displays information that exists in the database.
In addition, various summary statistics are optionally calculated and
displayed.

FORM

The general form of the PRINT statement is as follows:

1) The procedure keyword PRINT.
2) A description of which part of the database is being use%

to define the vertical axis.
3) A description of which part of the database is being used

to define the horizontal axis.
4) A description of what is to be printed as a title at the

top of the produced report.
5) Various options that define operations to be performed on

the displayed information and that control the appearance
of the output.

EXAMLE

PRINT ROWS (TASKS) AVGP / COLUMNS (11-13)
HEADING := 'EXAMPLE OF PRINT PROCEDURE'.

This PRINT statement would output tasks as designated by the CODAPSO
system module TASKS down the vertical axis (any designation occurring before
the slash () indicates the elements of the vertical axis). The keyword
AVGP specifies that the average (non-missing elements onLy) is to be
calculated on the elements occurring down the vertical axis. 11-13
specifies that the first three columns of the database are to comprise the
elements of the horizontal axis (any designation occurring after the (/)
indicates the elements of the horizontal axis). The string enclosed in
single quotes following the HEADING keyword indicates what is to be printed
at the top of the page as a title.

OUTPUT FROM PROCEDURE

Execution of the PRINT procedure produces a report displaying the rows
and columns of a database. Exactly which rows and columns are displayed,
and the appearance the output will have, is a function of user input.

10

102

/

.l.." 1

PRINT

CAUTION: The user is warned to display great care when requesting
output from the PRINT procedure. Inadvertent requests
could conceivably generate a report consisting of
inordinate amounts of paper.. For example, in a study
with 1,000 incuinbents, measured on 200 tasks, that had
been clustered, the following PRINT statement would
generate over 350 pages of output:

PRINT ROWS (TASKS) NOREMARKS I
COLUMNS (G999) NOREMARKS MISSING
HEADING:= 'VERY LARGE PRINTED OUTPUT'.

The word TASKS specifies that all tasks in the study

will constitute the vertical axis and G999, as the
last stage in the clustering process, indicates fhat
all incumbents in the study will comprise the elements
of the horizontal axis.

The user is also warned that the above PRINT command
represents the most inefficient way to print database
(system) information. A much faster PRINT command to
dump the same database information is as follows:

PRINT COLUMNS (G999) NOREMARKS I
ROWS (TASKS) NOREMARKS MISSING
HEADING:= 'VERY LARGE PRINTED OUTPUT'.

10
(

103j

1< _ __ _ _ __ _ _ _ _ _

Ii

PRINT

PRINT SYNTAX

Refer to the syntax graph of the PRINT procedure.

PRINT

The keyword PRINT identifies the command.

VERTICAL DATA TYPE DESIGNATION

The PRINT procedure displays the rows and columns of a two-dimensional
occupational database. Specification of the keyword ROWS as the vertical
data type designation indicates that the vertical axis of the printed output
is to be made up of database rows. Conversely, if the keyword specified is
COLUMNS then the vertical axis of the output will consist of database
columns. If the data type designation for the vertical axis is ROWS, the
horizontal data type designation must be COLUMNS. The reverse would be true
were columns of the database chosen to define the vertical axis.

GROUP LIST

A group list is a list of at least one group ID enclosed in paren-
theses. The group list serves to indicate to the -PRINT procedure which
database columns are to comprise the vertical axis of the printed output.
If the vertical data type designation was COLUMNS, then a group list
specification must follow. Group IDs appearing in the group list may
consist of created groups defined through the use of the SELECT procedure,
CODAPSO system cluster groups (such as Gl-G3, as defined by the OGROUP
routine at database creation time) and the system group INCUMBENTS.

MODULE LIST

A module list is a list of at least one module ID enclosed in paren-

theses. The module list serves to indicate to the PRINT procedure which
database rows are to comprise the vertical axis of the printed output. If
the vertical data type designation was ROWS. then a module list specifi-
cation must follow. Module IDs appearing in the module list may consist of
created -modules defined through the use of the SELECT procedure and the
CODAPSO system modules HVARS, TVARS, TASKS and SVARS.

NOREMARKS

Use of the keyword NOREMARKS at this point in the procedure's syntax
indicates that any remarks associated with the IDa specified to comprise the
vertical axis of the output are not to be printed. .

104

1|

PRINT

NOSUMMARY

Specification of the keyword NOSUMMARY indicates that a separate
summarization of vertical axis aggregates (group or module IDa appearing in
the vertical group or module list specification) is not. to be printed.

SUMONLY

The keyword SUMONLY Indicates that only the summary calculations down
vertical elements are to be printed. The actual vertical elements that went
into the summary calculations will not be printed.

SUMMARY IUNCTIOI?8

There are six different summary calculations that can be performed down
the vertical axis. They are as follows:

AVGA - Average, including missing values.
AVGP - Average, excluding missing values.
STDA - Standard deviation, including missing values.
STDP - Standard deviation, excluding missing values.
SUM - Sum of non-missing values.
N - Number of non-missing values.

Specification of these summary functions may occur in any order. A summary
function may not be specified more than once.

SLASH

The slash delimiter '/' serves to differentiate vertical axis designa-
tions and horizontal axis designations. Designations occurring before the
slash ('I') define the elements of the vertical axis and designations fol-
lowing the slash define the elements of the horizontal axis. If the user
has specified COLUMNS before the slash, ROWS must be specified following the
slash. Conversely, if the user specifies ROWS before the slash, COLUMNS
must follow the slash.

HORIZONTAL DATA
TYPE DBSIGQNATION

The keyword ROWS indicates that row elements of the database will
comprise the horizontal axis of the printed output, while the keyword
COLUMNS indicates that the horizontal axis will consist of column elemefts.

!

105

h0

PRINT

MODULE ROW LIST

A Module Row List (MROWLT) is a list of at least one module or row ID
enclosed in parentheses. Lists of module IDs, system row lists and lists of
row IDs may all occur together in a MROWLT. In regard to the PRINT proce-
dure, the MROWLT serves to specify which row elements are to comprise the
horizontal axis on output.

GROUP COLUMN LIST

A Group Column List (GCOLST) is a list of at least one group or column
ID enclosed in parentheses. Lists of group IDs, system group lists, system
column lists and lists of column IDs may all occur together in a GCOLST. In
regard to the PRINT procedure, the GCOLST serves to specify which column
elements are to comprise the horizontal axis on output.

NOREMARKS

Specifying NOREMARKS indicates that the remarks associated with the
horizontal axis element designations are not to be printed.

MISSING

The default condition for the PRINT procedure is not to print out those
elements of data that are missing (many of the task responses from an indi-
vidual may be missing). To print out the missing values, the user needs to
appropriately specify the keyword MISSING.

SORT DESCENDING BY

The user has the option of sorting the printed information. The
default is to sort by ascending value. By specifying DESCENDING the sort
proceeds by descending value.

SORT ID

The SORT ID is a single row or column ID enclosed in parentheses. The
ID must agree in type with the horizontal axis element designations. In
other words, if the horizontal axis data type s ROWS, then the element ID
specified as the SORT ID must be a row also. If the horizontal axis data
type is COLUMNS, then the element ID specified as the SORT ID must be a
column also. 'The values of the element ID specified in the SORT ID will be
used to sort the values bt the horizontal axis element designations.

CUe

This keyword indicates that a running accumulation of specified IDs is
to be calculated and printed.

106

, ..-

• ' ' " -'.~- --- -- ' "

PRINT

SCUM LIST

This is a list of at least one row or column ID enclosed in paren-
theses. For those IDs indicated in the CUMLIST, a running accumulation will
be calculated and printed. The IDs appearing in the CUMLIST must agree in
type with the data type of the horizontal axis designation.

NORESET

Specification of the NORESET keyword indicates that any accumulation
vectors are not to be reset to zero (which is the default) at the beginning
of a new vertical data type designation.

COUNT

Specification of the keyword COUNT alerts the system to expect a fol-
lowing integer constant, the value of which determines the occurrence of
line breaks in the procedure output. Line break specification is optional.

CONSTANT

The value of the integer constant following the COUNT keyword deter-
mines the occurrence of procedure output line breaks.. If, for example, the
integer conStant specified was the number 3, a line break and count would
occur following every third line output by the procedure (see example 6, of
PRINT).

NOSKIP

Specification of the NOSKIP keyword indicates that printed output is
not to go to the top of a new page when printing the start of another
Vertical data type designation (a new group or module).

FORMAT

FORMAT SPECIFICATION

The PRINT procedure allows the user to specify the number of decimal
places that are to appear with printed values. The number of decimal places
that may be specified range from 0 (print as an integer) to 9. The user is
warned to use good judgement when selecting a format specification. Up to
12 digits (including the sign) may be printed. Consider the following
example:

PRINT COLUMNS (INCUMBENTS) NOREMARKS I ROWS (H1-HS)
FORMAT HI 0 H3 1
HEADING30PRINT WITH FORMAT.

The above PRINT command would produce a PRTVAR report. History variable HI
would print as an integer and H3 would print with one decimal place. H2,
H4-H9 would default to two decimal places.

107

-0 '+-

PRINT

HEADING

The word HEADING serves to indicate that the following string is to be
used as a report title.

ASSIGNMENT OPERATOR

Either the symbols '' or ':=!. Either of these symbols may be used to
separate the HEADING keyword from the title character string.

CHARACTER STRING

Up to 10 lines -of 121 characters each may comprise the character string
in the PRINT statement. Each title line of up to 131 charactei-s is enclosed
in single quotes, with the beginning of a new title line indicated by a
blank and another line enclosed in single quotes.

For example:

HEADING:= 'EXAMPLE OF A HEADING STRING BEING USED TO'
'DEMONSTRATE HOW TITLES ARE CONSTRUCTED'.

This example would produce two title lines centered at the top of the output
page:

EXAMPLE OF A HEADING STRING BEING USED TO
DEMONSTRATE HOW TITLES ARE CONSTRUCTED

PERIOD

A period ('.') must end the PRINT statement.

I

109

- .V, .''A t " - " *: *.

PRINT

t PRINT EXAMPLES

EXAMPLE 1

PRINT ROWS (TASKS) / COLUMNS (AVGPAGE STDPAGE)
HEADING := 'PRINT EXAMPLE 1'

'PRINTING-OUT CREATED COLUMNS FROM'
'AVALUE EXAMPLE 1'.

The reader is referred to example 1 of the AVALUE procedure. The above
PRINT syntax is requesting that task rows comprise the vertical axis of the
output, and the columns AVGP AGE and STDP AGE (generated through the execution
of the syntax in AVALUE example 1) comprise the horizontal axis.

EXAMPLE I
PRINTED OUTPUT

PAGE- 1
STUDY ID - SAMPLEDATASO

PRINT EXAMPLE 1
PRINTING-OUT CREATED COLUMNS FROM

AVALUE EXAMPLE 1

AVGPAGE AVERAGE AGE (AVGP), G6
STDPAGE STD AGE (STDP), G6

AVGPAGE STDPAGE

TASKS

T - 1 SUBDUE VIOLENT INMATES 32.60 14.10
T - 2 SHAKE DOWN INMATES 32.60 14.20
T - 3 SHAKE DOWN VISITORS 23.00 4.00
T - 4 ESCORT INMATES 27.70 11.70
T - 5 TESTIFY IN COURT 34.00 9.90

109

' I.

PRINT

EXAMPLE 2

BEGIN SAMPLEDATAS0 EXECUTE.
SELECT ROWS MODI (T1-T3) 'SHAKE DOWN TASKS';

ROWS MOD2 '(T4-T5) 'OTHER TASKS'.
PRINT ROWS (MOD1 MOD2) AVGA STDA / COLUMNS (I1 16) N4OREMARKS

MISSING SORT BY (11)
HEADING:= 'EXAMPLE 2'

'PRINTING OFF MODULE 1 4 2 DATA FOR'
'INCUMBENTS 1 & 6'.

END.

In this example. the user is requesting that the vertical axis of the
output consist of rows (specifically, the rows identified by the module MOD1
- tasks 1-3 and MOD2 - tasks 4-5). and that the summary statistics AVGA and
STDA -be calculated down them. The horizontal aids of the output" will ori-
sist of the columns I1 and 16, all missing values will be printed and the
values of these two columns will be in 11 ascending sort order. A separate
module summary will be printed on the page after the actual procedure
output.

EXAMPLE 2.
PRINTED OUTPUT

Page- 1
STUDY ID - SAMPLEDATA80

EXAMPLE 2
PRINTING OFF MODULE 1 & 2 DATA FOR

INCUMBENTS 1 & 6

I -- 6

MOD1 SHAKE DOWN TASKS

T - 2 SHAKE DOWN INMATES 9.00 64.00
T - 3 SHAKE DOWN VISITORS 9.00 0.00
T - I SUBDUE VIOLENT INMATES 64.00 36.00

AVGA 27.33 33.00
STDA 31.75 32.08

110

Li___ - -

I,

PRINT

EXAMPLE 2
PRINTED OUTPUT (oontinued)

~Page - 2
STUDY ID - SAMPLEDATA80

EXAMPLE 2
PRINTING OFF MODULE 1 a 2 DATA FOR

INCUMBENTS 1 & 6

I-1 I-6

MOD2 OTHER T.ASKS

T - 5 TESTIFY IN COURT 0.00 0.00
T - 4 ESCORT INMATES 18.00 0.00

AVGA 9.00 0.00
ST DA 12.73 0.00

Ii

j. 11
il ... I B - .

PRINT

EXAMPLE 2
MODULE SUMMARY
PRINTED OUTPUT

PAGE - 1
STUDY ID -SAMPLRDATA80

EXAMPLE 2
PRINTING OFF MODULE 1 & 2 DATA FOR

INCUMBENTS 1 & 6

SAVGA SUMMARY *

I-i 1- 6

MOD2 OTHER TASKS 9.00 0.00
MOD1 SHAKE DOWN TASKS 27.33 33.33

STUDY ID - SAMPLEDATA80 PG

EXAMPLE 2
PRINTING OFF MODULE 1 a 2 DATA FOR

INCUMBENTS 1 a 6

STDA SUMMARY *

1 1- 6

MOD2 OTHER TASKS 12.73 0.00

MODI SHAKE DOWN TASKS 31.75 32.08

112

PRINT

EXAMPLE 3

Assume that the user had, in an earlier job run, created a new column
on the data base with the following DESCRIBE statement (see the section on
the DESCRIBE procedure for more information):

DESCRIBE ROWS TASKS FOR (G6)
G6TASKSAVGP :=AVGP
'AVERAGE TIME SPENT PERFORMING-G6'.

The effect of this DESCRIBE statement is to create a new column with a
length NTASK (5) elements long. The new column vector is named G6TASKSAVGP
and consists of the average (for those performing) across all incumbents (G6
is the last stage in the clustering process - there were a total of 7
incumbents) for each task in the study.

The values in this column (1 element for each task) would be:

29.2 32.5 25.2 36.5 29.0

Printing off this column, with all remarks, the user would code the
following PRINT statement:

PRINT ROWS (MODI MOD2) NOSUMMARY SUM / COLUMNS
(G6TASKSAVGP) HEADING.:dEXAAMPLE 3'
'PRINTING OFF THE GENERATED COLUMN G6TASKSAVGP'.

EXAMPLE 3
PRINTED OUTPUT

PAGE - 1
STUDY ID - SAMPLEDATA80

EXAMPLE 3
PRINTING OFF THE CREATED COLUMN G6TASKSAVGP

G6TASKSAVGP AVERAGE TIME SPENT PERFORMING-G6

G6TASKSAVGP

MOD1 SHAKE DOWN TASKS

T - 1 SUBDUE VIOLENT INMATES 29.20
T - 2 SHAKE DOWN INMATES 32.50
T - 3 SHAKE .DOWN VISITORS 25.20

SUM 6 6.90

113

44

L

PRINT

EXAMPLE 3
PRINTED OUTPUT (oontinued)

PAGE - 2
STUDY ID - SAMPLEDATA80

EXAMPLE 3
PRINTING OFF THE CREATED COLUMN G6TASKSAVGP

G6TASKSAVGP AVERAGE TIME SPENT PERFORING-G6 I

G6TASKSAVGP

MOD2 OTHER TASKS

T - 4 ESCORT INMATES 36.50
T - 5 TESTIFY IN COURT 29.00

SUlM 65.50

114

17. .~-'N

PRINT

EXAMPLE 4

For a much simpler report of example 3, the following options can be
requested in the PRINT statement (an accumulation vector has also been
requested):

PRINT ROWS (MOD1 MOD2) NOREMARKS/COLUMNS (G6TASKSAVGP)
NOREMARKS CUM(G6TASKSAVGP)
HEADING :-'EXAMPLE 4'
'A MORE PARSIMONIOUS REQUEST OF EXAMPLE 3'
'ACCUMULATION VECTOR ADDED'.

EXAMPLE 4
PRINTED OUTPUT..

PAGE - 1
STUDY ID - SAMPLEDATA80

EXAMPLE 4
A MORE PARSIMONIOUS REQUEST OF EXAMPLE 3

ACCUMULATION VECTOR ADDED

ACCUMULATE-
G6TASKSAVGP G6TASKSAVGP

MODI

T - 1 29.20 29.20
T - 2 32.50 61.70
T - 3 25.20 86.90

PAGE - 2
STUDY ID - SAMPLEDATAS0

EXAMPLE 4
A MORE PARSIMONIOUS REQUEST OF EXAMPLE 3

ACCUMULATION VECTOR ADDED

ACCUMULATE
G6TASKSAVGP G6TASKSAVGP

MOD2

T - 4 36.50 36.50
T - 5 29.00 65.50

(-

PRINT

EXAMPLE 5

In the previous four examples the PRINT procedure was always requested
to produce a report in which the rows of the database comprised the vertical
axis of the output and the horizontal aids of the output was comprised of
database columns. In this example, symmetric display of the database wl
be addressed by instructing the PRINT procedure to output database columns
on the vertical axis and data base rows on the horizontal axis.

PRINT COLUMNS (G4) NOREMARKS/ROWS (MODI) NOREMARKS
HEADING:f='EXAMPLE 5' 'EXAMPLE OF SYMMETRIC DISPLAY'.

EXAMPLE 5
PRINTED OUTPUT

PAGE - 1
STUDY ID - SAMPLEDATA80

EXAMPLE 5
EXAMPLE OF SYMMETRIC DISPLAY

G-4 T -1 T -2 T -3

I - 1 64.00 9.00 9.00
I - 2 11.00 11.00 22.00
I - 3 0.00 0.00 20.00

EXAMPLE 6

BEGIN SAMPLEDATAS0 EXECUTE.
SELECT ROWS ALLROWS (H1-H4, T1-T5, S1-S5)

'MODULE CONTAINING ALL SYSTEM ROWS'.
DESCRIBE ROWS (ALLROWS) FOR INCUMBENTS

ROWN = N 'NUMBER RESPONDING TO ROW';
ROWPCNT = PCNT 'PERCENT RESPONDING TO ROW'.

PRINT ROWS (ALLROWS) NOSUMMARY AVGA I
COLUMNS (ROWN ROWPCNT) COUNT 5
HEADING = 'EXAMPLE 6' 'USE OF COUNT OPTION IN PRINT'.

END.

The command syntax in example 6 will result in a report displaying both
the number and percentage of incumbents responding to each of the system
rows on the database. The SELECT command is requesting that all system rows
be associated with the module ID ALLROWS. The DESCRIBE command immediately
following will calculate the number and percentage of incumbent responses to
each of the rows associated with the module ID ALLROWS. The two created
columns (ROWN and ROWPCNT) generated from execution of the DESCRIBE syntax*
will 'each contain 14 elements and will be permanently saved on the database.
The PRINT command syntax will displ.y down the vertical axis the rows
identified by the module ID ALLROWS and, across the horizontal axis of the
printed output, the created columns ROWN and ROWPCNT. Note the effect of
using the COUNT option.

116

Lz__ _

PRINT

EXAMPLE 6
PRINTED OUTPUT

Page- 1

STUPY ID.- SAMPLEDATA80
EXAMPLE 6

USE OF COUNT OPTION IN PRINT

ROWN NUMBER RESPONDING TO ROW
ROWPCNT PERCENT RESPONDING TO ROW

ALLROWS ROWN ROWPCNT

H - I SEX 7.00 100.00
H - 2 AGE 5.00 71.43
H - 3 YEARS ON JOB 7.00 100.00
H - 4 INCUMBENT ID 7.00 100.00
T - 1 SUBDUE VIOLENT INMATES 5.00 71.43

T - 2 SHAKE DOWN INMATES 6.00 85.71
T - 3 SHAKE DOWN VISITORS 5.00 71.43
T - 4 ESCORT INMATES 4.00 57.14

T - 5 TESTIFY IN COURT 3.00 42.86
S - 1 SECONDARY - SUBDUE VIOLENT INMATES 2.00 28.57

10

S - 2 SECONDARY - SHAKE DOWN INMATES 6.00 85.71
S - 3 SECONDARY - SHAKE DOWN VISITORS 5.00 71.43

S - 4 SECONDARY - ESCORT INMATES 4.00 57.14
S - 5 SECONDARY - TESTIFY IN COURT 3.00 42.86

AVGA 4.93 70.41

117

PRINT

........... I I I

j/-.

: - .; , ! -- ,...

IJJl i J i

.. - ,
-,

®r

*V '

I18

9 RANDOM

INTRODUCTION

PURPOSE

From the elements of any specified module or group ID, the RANDOM
procedure will randomly select a subsetting module or group.

FORM

The general form of the RANDOM command is as follows:

1) The procedure keyword RANDOM.
2) The keyword ROWS or COLUMNS.
3) An indication of the row or column aggregate (in the form

of a module or group ID) from which random selection is
to be made.

4) A constant or, optionally, the keyword KTH followed by a
constant.

5) A new ID. The new ID will be assigned to the module or
group subset selected.

6) Optionally, the keyword NOSAVE.
7) Descriptive text (a remark) supplied by the user that

will be associated with the new ID.

EXAMPLE

RANDOM ROWS SVARS 3 RANDOMSVARS '3 RANDOM SVARS'.

The above RANDOM command syntax is requesting that three -rows be
randomly selected from the row elements of CODAPS0 system module SVARS
(S1-S). The randomly selected module subset will be assigned the ID
RANDOMSVARS as well as the remark 3 RANDOM SVARS.

OUTPUT FROM PROCEDURE

Execution of the RANDOM procedure produces no printed output. If
NOSAVE was not specified the randomly selected module or group will be
permanently saved on the database for future reference.

119

4 47

RANDOM

RANDOM SYNTAX

Refer to the syntax graph of the RANDOM procedure.

RANDOM

The keyword RANDOM identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates to the system whether it is to be
rows or columns of the database that are randorwly selected.

MODULE ID

A module ID is an identified aggregate of database rows. The aggregate
of rows identified by the module ID will serve as the population from which
the RANDOM procedure will select a module subset. If the data type
designation following the RANDOM command keyword is ROWS, then a module ID
must follow.

CAUTION: All created module IDs appearing in the RANDOM
command syntax must have been aelected and per-
manently saved during a previous execution of the
CODAPS0 interpreter. RANDOM cannot process created
modules that were selected in the same run stream.

GROUP ID

A group ID is an identified aggregate of database columns. The
aggregate of columns identified by the group ID will serve as the population
from which the RANDOM procedure will select a group subset. If the data
type designation following the RANDOM command keyword is COLUMNS, then a
group ID must follow.

CAUTION: All created group IDs appearing in the RANDOM
command syntax must have been selected and per-
manently saved during a previous execution of the
CODAPSO interpreter. RANDOM cannot process groups
that were selected in the same run stream.

KTH

Appearance of the optional keyword KTH indicates that the selected
module or group subset is to consist of every "Kth" element of the module or
group serving as the population, with the first element being randomly
chosen. See example 2 of RANDOM for more information.

120

RANDOM

t
CONSTANT

A user supplied integer numeric value, such as '10'. The value of the
constant will determine the number of elements selected frcm the population
module or group to be in the subset. If the optional keyword KTH preceeds
the constant, then the value of the constant represents every "Kth" element
to be selected.

ID

Any valid CODAPSO ID, supplied by the user. The ID supplied will be
associated with the module or group subset that was randomly selected.

-NOSAVE

If the optional keyword NOSAVE is specified, the randomly selected
module or group will not be permanently saved for future reference.

REMARK

This is a string of up to 240 characters, enclosed in single quotes.
The remark will be associated with the new module or group ID created. A
remark must be associated with the new ID.

PERIOD

A period (1.,) must end the RANDOM statement.

121

Ai •_

RANDOM

RANDOM EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATA80 EXECUTE.
RANDOM ROWS TASKS*2 RANDMODULE

'2 TASK ROWS SELECTED AT RANDOM.
END.

The above RANDOM command syntax is requesting that two rows be randomly
selected from the aggregate of rows identified by the module ID TASKS
(T1-T5). Execution of the above syntax will result in the creation of
module RANDMODULE. This module ID will be associated with two task rows
selected randomly. The module ID, and its associated remark, .will be
permanently stored for future reference.

EXAMPLE 2

BEGIN SAMPLEDATA80 EXECUTE.

RANDOM COLUMNS INCUMBENTS KTH 2 RANDOMGROUP
'EVERY 2ND INCUMBENT COLUMN'.

END.

The above RANDOM command syntax is requesting that from the column
aggregate identified by the system group INCUMBENTS (11-17), every 2nd (Kth)
column be selected and be identified by the new created group ID
RANDOMGROUP. The first column selected from the system group INCUMBENTS
is to be randomly determined. If, for example, the first column chosen
randomly from group INCUMBENTS was 14, then the new created group
RANDOMGROUP will be associated with 4 system columns; 14. 16, 11 and 13.
The procedure will continue selecting every 2nd element of the group ID
specified to act as the population until it has cycled through al the
elements associated with the ID INCUMBENTS, stopping the selection process
only when it happens back across the first column element (the randomly
selected column, 14) that started the process to begin with.

1

122
I

* '.,,~.|

RANDOM

12

In

RELY

INTRODUCTION

PURPOSE.

The RELY procedure calculates reliability estimates of the mean of a
set of k raters (Rkk) and that of a single rater (RI). The reliability
estimates calculated are useful in the determination of agreement among the
responses from a series of raters or judges. The computational method is
from Winer (1971).

FORM

The general form of the RELY procedure is as follows:

1) The procedure keyword RELY.
2) The keyword ROWS or COLUMNS.
3) A designation of the rows (a module) or columns (a group)

for which reliabilities are to be calculated.
4) An indication of whether or not the reliabilities are to

be "adjusted."
5) Heading(s) to serve as titles on the printed output from

the procedure.

EXAMPLE

BEGIN SAMPLEDATAS0 EXECUTE.
ADDATA COLUMNS FOR TASKS N=3

JUDGE1 'JUDGE NUMBER 1'
JUDGE2 'JUDGE NUMBER 2'
JUDGE3 'JUDGE NUMBER 3'
FORMAT '(SF1.0)'.

SELECT COLUMNS JUDGES (JUDGE1 JUDGE2 JUDGE3)
'GROUP OF JUDGES'.

RELY COLUMNS JUDGES FOR TASKS
HEADING=EXAMPLE OF RELY PROCEDURE.

END.
27441
38331
26342

The above example illustrates a. classic use of the RELY procedure.
Three judges are rating each of the five tasks on the database as to the
consequences of their inadequate performance. The ratings are appended to
the database through the use of the ADDATA procedure. The three judges'
responses are formed into a group by the SELECT procedure and then this
group of responses is submitted to the RELY procedure in order that an esti- I
mate of reliability may be calculated.

124

/

RELY

0 OUTPUT FROM PROCEDURE

Output from the RELY procedure consists of printed output displaying
Rkk and RH reliabilities, the various sums of squares and mean squares that
went into the calculation of the reliabilities and a break-down of the indi-
vidual raters" borrelations and T values.

1

• i 125

_ _ __ ____

mI

RELY

RELY SYNTAX

Refer to the syntax graph of the RELY procedure.

RELY

The keyword RELY identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS indicates that the RELY procedure is to preform its
calculations on database rows .. The keyword COLUMNS indicates that reliabil-
ities are to be calculated on database columns.

MODULE OR GROUP ID

If the data type designation is ROWS, then a module ID must follow. If
COLUMNS is designated, a group ID must follow. The module or group ID
indicates the database rows or columns -for which reliabilities are to be
calculated.

FOR

The keyword FOR alerts the procedure to expect, depending on the type
of the preceding data designation, a module or group ID.

GROUP OR MODULE ID

If a module ID occurs before the FOR keyword, then a group ID must fol-
low. Conversely, if a group ID precedes the FOR keyword, then a module ID
must follow. The group or module ID following the FOR keyword indicates the
values across which reliabilities for rows or columns are to be calculated.
Statistically, the group or module ID following the FOR keyword can be
thought of as an indication of the number of observations contained in each
of the rows or columns for which reliabilities are being calculated.

ADJUST

Specification of the optional keyword ADJUST indicates that, when
* calculating reliabilities, differences due to anchor points are not to be
considered part of the error of measurement.

126

RELY

HEADING

The keyword HEADING indicates that the following character string
enclosed in single quotes is to be used as a title on the printed output.

ASSIGNMENT OPERATOR

A "-" symbol. The assignment operator separates the HEADING keyword
from the character string(s) serving as a report title.

CHARACTER STRING

Up to 10 lines of 131 characters each may comprise the title character
string.

PERIOD

A period ('.') must end the syntax of the RELY procedure.

(

127

RELY

RELY EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATA80 EXECUTE.
ADDATA ROWS FOR INCUMBENTS N=6

TRACTOR 'OPERATE TRACTOR'
JACKHAMMER 'OPERATE JACKHAMMER'
BULLDOZER 'OPERATE BULLDOZER'
POWERWRENCH 'OPERATE POWERWRENCH'
FLAMETHROWER 'OPERATE FLAMETHROWER'
TELEPHONE 'OPERATE TELEPHONE'
FORMAT '(7Fl.0)'.

SELECT ROWS EQUIPMENT (TRACTOR JACKHAMMER BULLDOZER
POWERWRENCH FLAMETHROWER TELEPHON)
'EQUIPMENT MODULE'.

ADDATA COLUMNS FOR EQUIPMENT N=4
RATERI 'RATER NUMBER 1'
RATER2 'RATER NUMBER 2'
RATER3 'RATER NUMBER 3'
RATER4 'RATER NUMBER 4'
FORMAT '(SF1.0)'.

SELECT COLUMNS RATERS (RATER1 RATER2 RATER3 RATER4)
RATERS OF EQUIPMENT DIFFICULTY'.

RELY COLUMNS RATERS FOR EQUIPMENT
HEADING='RELIABILITY OF EQUIPMENT DIFFICULTY RATINGS'.

END.
1100011
0010100
1100000
1001000
0000001
1000001
251726
473948
351968
362814

In the above example six rows are initially being added to the database
that represent different equipment usage indices for each incumbent (1 if
the incumbent operates the equipment and 0 if they do not). Each of the six
equipment rows are being permanently appended to the database. The SELECT
.procedure following the first ADDATA command is forming the six equipment
rows into a module named EQUIPMENT. The second ADDATA command is adding
four columns to the database adjacent to the rows contained in module
EQUIPMENT. The values of the four columns are from Winer (1971), page 288,
and are being used in this example to represent equipment difficulty indices
from four raters. The second SELECT command is forming the four columns of
difficulty ratings into a group called RATERS. Finally, the RELY procedure
is being invoked to calculate reliabilities on the four columns of rating &
measured across the six equipment rows.

128

tv ;1 1V

RELY

t EXAMPLE 1
PRINTED OUTPUT

PAGE - 1

STUDY ID - SAMPLEDATA80
RELIABILITY OF EQUIPMENT DIFFICULTY RATINGS

RATERS - RATERS RATERS OF EQUIPMENT DIFFICULTY
TASKS - EQUIPMENT EQUIPMENT MODULE

RII - 0.737705 RELIABILITY FOR A SINGLE RATER
RKK - 0.918367 RELIABILITY FOR THESE K RATERS
BTSS - 122.500 BETWEEN TASK SUM OF SQUARES
WSS - 36.000 WITHIN TASK SUM OF SQUARES
BRSS - 17.500 BETWEEN RATER SUM OF SQUARES
RSS - 18.500 RESIDUAL SUM OF SQUARES
TSS - 158.500 TOTAL SUM OF SQUARES
BTMS - 24.500 BETWEEN TASK MEAN SQUARE
WMS - 2.000 WITHIN TASK MEAN SQUARE
BTMS - 5.833 BETWEEN RATER MEAN SQUARE
RMS - 1.233 RESIDUAL MEAN SQUARE
TMS - 6.891 TOTAL MEAN SQUARE
NRATER- 4. AVERAGE NUMBER OF TASKS
N - 6 NUMBER OF TASKS
K - 4 NUMBER OF RATERS

PAGE - 2

STUDY ID - SAMPLEDATA80
RELIABILITY OF EQUIPMENT DIFFICULTY RATINGS

RATER RATER NUMBER OF TASKS
NUMBER ID RATED BY THIS RATER CORRELATION T-VALUE
1 R 6. 0.986770 12.1729
2 RATER2 6. 0.986772 12.1739
3 RATER3 6. 0.793378 2.6067
4 RATER4 6. 0.784837 2.5329

EXAMPLE 2

BEGIN SAMPLEDATASO EXECUTE.
RELY COLUMNS RATERS FOR EQUIPMENT ADJUST

HEADING='ADJUSTED RELY'.
END.

The second example of the RELY procedure is requesting that
reliabilities be calculated on exactly the same data as in the first example
(sine* all data that was added was saved permanently, the second example is

(much simpler than the first). The main difference between the two RELY
examples is that the second example is requesting that statistics be
"adjusted" (anchor points are not to be considered part of the error of

129

RELY

measurement). The output generated from the second RELY example will be
addtioaladjustment statistics will be printed (in this case RKK will
equl 94960and R11 will equal .825059).

130

I,
1 RELY

ii
iQ.

I IA U I
I

*
* 131

7, _________ _______ _______ 1'
/

I.

REPORT

INTRODUCTION

PURPOSE

The REPORT procedure is used to facilitate documentation by producing
an up-to-date listing of the information that resides on a given CODAPS0
database.

FORM

The general form of the REPORT procedure is as follows:

1) The procedure keyword REPORT.
2) A keyword indicating the database information to be

reported.
3) The optional keyword NOREMARKS.
4) A period or semicolon.

EXAMPLE

BEGIN SAMPLEDATA80 EXECUTE.
REPORT SYSCNST.
END.

The above REPORT syntax is requesting that a listing be produced dis-
playi g information on the system constants that reside on the database.

OUTPUT FROM PROCEDURE

As a function of user input, REPORT will produce a printed display of
information pertaining to system constants, rows, columns, modules or groups
that reside on a CODAP80 database.

132

- 'n:;

I,'
REPORT

REPORT SYNTAX

Refer to the syntax graph of the REPORT procedure.

REPORT

The keyword REPORT identifies the command.

ALL

Specification of the ALL keyword will produce a listing pertaining to
&l the stored information on the-database.

MODULES

The appearance of the MODULES keyword in the REPORT procedure syntax
will produce a listing of information pertaining to the system and created
modules that reside on the database.

SYSMODS

Specification of the. SYSMODS keyword will produce a listing of all
database system modules.

CMODS

Specification of the CMODS keyword will produce a listing of all data-
base crested modules.

GROUPS

The appearance of the GROUPS keyword will produce a listing of informa-
tion pertaining to the system and created groups that reside on the data-
base.

SYSGROUPS

Specification of -the SYSGROUPS keyword will generate a listing of
information pertaining to the system groups that reside on the database.

CORPS

ZA CORPS keyword designation will result in a listing of the created
W groups on the database.

133

REPORT

ROWS

The appearance of the ROWS keyword will produce a listing of both
system and created rows on the database.

SYSROWS

A SYSROWS keyword designation will result in a listing of database
system rows.

HROWS

The appearance of the HROWS keyword will generate a listing of the
history rows on the database.

TROWS

The appearance of the TROWS keyword will generate a listing of the task
rows on the database.

CROWS

A CROWS keyword designation will result in a listing of created
database rows.

COLUMNS

The appearance of the COLUMNS keyword will generate a listing of both
system and created columns on the database.

SYSCOLS

system columns.

CCOLS

A CCOLS keyword designation will result in a listing of created
database columns.

CONSTANTS

The appearance of the CONSTANTS keyword will produce a listing of
system constants residing on the database.

134
t

- - - - , ,a

REPORT

SYSCNST

Specification of the keyword SYSCNST will produce a listing of database
system constants.

NOREMARKS

Specification of the keyword NOREMARKS will suppress the printing of
any remarks associated with the listed database information.

PERIOD OR SEMICOLON

A period must end the syntax of the. REPORT procedure. For an
illustration of the use of the terminating semicolon, see example 2 of
REPORT.

I

135

-"At"

REPORT

REPORT EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATASO EXECUTE.-
REPORT TROWS.
END.

The above REPORT syntax will produce a listing of the task rows
residing on the database.

EXAMPLE 1

PRINTED OUTPUT

PAGE - I

STUDY ID - SAMPLEDATA80
TASK ROW REPORT

ROW REMARK
------ --

T I SUBDUE VIOLENT INMATES
T 2 SHAKE DOWN INMATES
T 3 SHAKE DOWN VISITORS.
T 4 ESCORT INMATES
T 5 TESTIFY IN COURT

EXAMPLE 2

BEGIN SAMPLEDATAS0 EXECUTE.
REPORT HROWS; SROWS.
END.

The above REPORT syntax will produce a listing of both the history and

secondary rows residing on the database. Note the terminating semicolon.

EXAMPLE 2

PRINTED OUTPUT

PAGE- 1

STUDY ID - SAMPLEDATA80
HISTORY ROW REPORT

ROW REMARK
---- ----------------------------.
H I SEX
H 2 AGE
H 3 YEARS ON JOB
H 4 INCUMBENT ID

136

/ - L | ..--. . . - _ _ _ _ _ _ I,..

REPORT

EXAMPLE 2

PRINTED OUTPUT (oontinued)

PAGE - 2

STUDY ID - SAMPLEDATA80
SECONDARY]tOW REPORT

ROW REMARK

4----- --- --

- 1 SECONDARY - SUBDUE VIOLENT INMATES
S 2 SECONDARY - SHAKE DOWN INMATES
S 3 SECONDARY - SHAKE DOWN VISITORS
S 4 SECONDARY - ESCORT INMATES
S 5 SECONDARY - TESTIFY IN COURT

(.13

~137

,,1 tt..

REPORT

ALL

Sfsmoos

CRUPS

pawss

no"/os
OEAK

£"W

9 SELECT

INTRODUCTION

PURPOSE

The SELECT procedure defines aggregates of rows of columns on a data-
base. SELECT provides the means by which CODAP80 users generate modules of
database rows or groups of database columns that meet speciffed criteria.
Generally, the CODAPSO user will not be interested in processing an entire
database at one time but will only be concerned with a particular subset of
the database. Through the use of the SELECT procedure aggregates of data-
base rows or columns are assigned module or group ID's. Any future refer-
ence in other procedures to the selected ID alerts CODAP80 to direct proc-
essing to that subset of the database associated with it.

FORM

The general form of the SELECT procedure is as follows:

1) The procedure keyword SELECT.
2) A data type designation specifying whether rows or col-

umns of the database are to be selected.
3) A user supplied valid CODAP80 ID that will be associated

with the aggregate of database rows or columns selected.
4) Selection criteria defining which database rows or col-

umns are to be members of the new module or group.
5) An indication of whether or not the new module or group

ID is to be permanently saved for future reference.

EXAMPLE

BEGIN SAMPLEDATAS0 EXECUTE.
SELECT ROWS NEWMODULE (T2-T3) NOSAVE

END.'SHAKE DOWN TASKS'.

Execution of the above SELECT example will form a module (named
NEWMODULE) of two tanks. The module will exist only for the duration of the
computer run (as indicated by the NOSAVE keyword). The remark SHAKE DOWN
TASKS will be associated with the module ID.

OUTPUT PROM PROCEDURE

Execution of the SELECT procedure produces no printed output. The
result of executing the SELECT procedure will be a new module or group of

* database rows or columns being defined.

139

, /

SELECT

SELECT SYNTAX

Refer to the syntax graph of the SELECT procedure.

SELECT

The keyword SELECT identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates whether a module or group is
being selected.

ID

This is any valid 1-12 character CODAPS0 ID supplied by the user. It

will be associated with the module or group being selected.

COLUMN LIST

A column list is a list of database columns enclosed in parentheses.
System columns and created columns may both be in the list. The columns
appearing in the list will be included in the group being selected. A col-
umn ID appearing in the list may only be specified once. System columns
appearing in the list must be specified in ascending numerical order. An
example of a valid column list is "(11-13, I5)".

ROW LIST

A row list is a list of database rows enclosed in parentheses. System
rows and created rows may both be in the list. The rows appearing in the
list will be included in the module being selected. A row ID appearing in
the list may only be specified once. System rows appearing in the list must
be specified in ascending numerical order. An example of a valid row list
is "(H1, T1-T3, Si, S5)".

BOOLEAN OPERATOR

A Boolean operator is used to connect a row list with a column Boolean
expression or a column list with a row Boolean expression. Acceptable
Boolean operators are ".AND." and ".OR." and help to define the criteria for
module or group selection. If the Boolean operator is ".AND." it means only
those elements of the preceding row or column list that meet the criteria of
the following Boolean expression will be Included in the group or module. I
If the Boolean operator is ".OR." it means all the elements of the preceding
row or column list plus those that meet the criteria of the following
Boolean expression will be included in the group or module. See SELECT
example 7 for illustration.

140

p -

SELECT

ROW BOOLEAN EXPRESSION*

A row Boolean expression is a standard Boolean expression used to
establish a set of criteria upon which to base the inclusion of a database
column into a group. As an extension of the standard Boolean expressign.
selection criteria can be focused on a particular' subset of database columns
by defining that they be "IN" or "NOT IN" a specific group. See SELECT
examples 3 and 4 for illustration.

COLUMN BOOLEAN EXPRESSION*

A column Boolean expression is a standard Boolean expression used to
establish a set of criteria upon which to base the inclusion of a database
row into a module. As an extension of the standard Boolean expression.
selection criteria can be focused on a particular subset of database rows by-
defining that they be "IN" or "NOT IN" a specific module. See SELECT
examples 5 and 6 for illustration.

NOSAVE

Specification of the optional keyword NOSAVE indicates that the defined
group or module will not be permanently saved for future reference, but will
exist only for the duration of the computer run.

REMARK

A remark is a string of up to 240 characters enclosed in single quotes.
The remark will be associated with the group or module selected.

PERIOD OR SEMICOLON

A period ('.') must end the syntax of the SELECT procedure. If the
syntax ends in a se " Ion, another SELECT command may immediately follow
'without having to repeat the SELECT command keyword.

*NOTE

A Boolean expresion may consist of relational operators, Boolean

operators or both. Relational operators (often called comparison operators)
propose a relationship between two quantities and ask CODAPSO to determine
whether or not the relationship holds. The relational operators take the
folowing form:

or .EQ. equal to
or .NE. not equal to

>= or .G. greater than or equal to
<= or .Lt. tes than or equal to
> or .OT. greiter than
< or .LT. less than

141

SELECT
Boolean operators (often called logical infix operators) are usuallyused in expressions that also include relational operators. The Booleanoperators take the following formi:

&or .AND.
or .OR.

See SELECT example 8 for an illustration of the use of both relationaland Boolean operators in a Boolean expression.

142)

SELECT

SELECT EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATA80 EXECUTE.
SELECT RbWS DUTYA (T1 T2 T4) 'INMATE TASKS';

ROWS DUTYB (T3 T5) 'NON-INMATE TASKS';
ROWS SHAKEDOWN (T2 T3) 'SHAKE DOWN TASKS';
COLUMNS PEOPLE (11-13) TFIRST- 3 PEOPLE ON DATABASE'.

END.

The above SELECT syntax is generating three modules (DUTYA, DUTYB.
and SHAKEDOWN) of database rows and one group (PEOPLE) of database
columns. They will be permanently saved on the database for future refer-
ence. The SELECT syntax'in example i illustrates the use of row lists and
column lists to define the criterion for selection of a database row or
column as a member of a module or group. Note that a database row may be
selected for membership in more than one module (the same is true of data-

jj base columns).

EXAMPLE 2

BEGIN SAMPLEDATA80 EXECUTE.
SELECT COLUMNS MALES (H1=1) 'MALE INCUMBENTS';

COLUMNS FEMALES (H1=2) 'FEMALE INCU.,'BENTS'.
END.

The SELECT syntax in example 2 illustrates the use of simple row
Boolean expressions to define column membership in a group. The effect of
the syntax in example 2 is to select those database columns in which H1=l
(Hi is sex; see Sample Database) as members of group MALES, and those in
which H1=2 as members of group FEMALES. Group MALES will have the following
columns as members: 12, 14-17. Group FEMALES will have the columns I1 and
13 as members.

E.XAMPLEK 3

BEGIN SAMPLEDATA80 EXECUTE.
SELECT COLUMNS OLDERMALES (H1=1 & H2 > 30)

'OLDER MALE INCUMBENTS'.
END.

The SELECT command in example 3 is using a row Boolean expression to
generate.a group of database eolumns named OLDERMALES. Membership is
defined as those database columns in which the rows H1 (Sex) equals 1 and H2
(Age) i greater than 30. The members of group OLDERMALES will be the data-
base columns 14 and 16.

143

SELECT

EXAMPLE 4

BEGIN SAMPLEDATA80 EXECUTE.

SELECT COLUMNS FEMALE G4 (Hl=2 & IN G4)
'FEMALE INCUMBENTS IN CLUSTER GROUP G4'.END.

Example 4 of SELECT is demonstrating the use of a row Boolean expres-
sion to select a group (named FEMALE G4) consisting of those incumbents who
are female and also members of the system cluster group G4 (which was gener-
ated by the OGROUP database creation routine). The members of group FEMALE
G4 will be the columns 11 and 13. Note the use of the "IN" parameter in the
Boolean expression. Instead of specifying the system cluster group G4, the
user could just have well specified the created group PEOPLE (which was
selected in SELECT example 1). The effect would be the same.

EXAMPLE 5

BEGIN SAMPLEDATA80 EXECUTE.
DESCRIBE ROWS TASKS FOR (INCUMBENTS) PERCENT RESP=PCNT

'PERCENTAGE OF INCUMBENTS RESPONDINg TO TASKS'.
SELECT ROWS HIPCNT TASKS (PERCENT RESP > 50)

'TASKS WITH GREATER THAN 50% RESPONDING'.
END.

The CODAP80 syntax in SELECT* example 5 is demonstrating how a user
might go about selecting a module of task rows that had more than 50 percent
of the incumbents responding. The DESCRIBE command is calculating, for
every task row on the database, the percentage of incumbents responding.
The effect of the command is to create a column of percentage values (named
PERCENTRESP) with a value for every task row:

PERCENTRESP

T1 71.43
T2 85.71
T3 71.43
T4 57.14
T5 42.86

The SELECT command in example 5 is using a column Boolean expression
to select a module of those row elements of the created column PERCENT RESP
that exceed a value of 50. The selected module will be named HIPCNT TASKS
and will have the rows T1-T4 as members. To produce a listing of t'he task
rows that were selected, the user need only reference the ID assigned to the
module in,. say, the PRINT procedure, and CODAP90 will direct processing at
the members in question.

)

144

p.".

SELECT

EXAMPLE 6

BEGIN SAMPLEDATA80 EXECUTE.
SELECT ROWS NEWMOD (PERCENT RESP >=50 a PERCENTRESP <=75

NOT IN DUTYB)
'TASKS WITH 50%-75% PERFORMING AND NOT IN DUTYB'.

END.

The SELECT command in example 6 is creating a module (named NEWMOD)
with the task rows TI and T4 as members. The task rows selected correspond
to those row elements of the column PERCENT RESP that ranged in value from
50 to 75, and that were at the same time not members of module DUTYB (see
example 1 and 5 of this procedure). Note the use of the "NOT IN" parameter
in the column Boolean expression.

EXAMPLE 7

BEGIN SAMPLEDATAS0 EXECUTE.
SELECT COLUMNS NEWGRP (11-15) .AND. (S2=1)

'INMATE SHAKE DOWN ASSISTANT AMONG FIRST 5
INCUMBENTS'.

END.

The SELECT command in example 7 is demonstrating how a column list and
a row Boolean expression may be combined to define the criteria for group
membership. The effect of the command is to create a group (named NEWQRP)
with the columns I1, 12 and I5 as members. The appearance of the ,3oolean
operator ".AND." between the column list and the Boolean expressiol defines
the selection criteria for group membership as being only those elements of
the preceding column list (11-15) that are true for the following row
Boolean expression (S2=1). Had the Boolean operator between the column list
and the row Boolean expression been ".OR." the selection criteria for group
membership would have been those elements appearing in the preceding column
list Plus any columns that were true for the following row Boolean expres-
sion (resulting in a group with the .columns 11-16 as members).

EXAMPLE 8

BEGIN SAMPLEDATAS0 EXECUTE.
DESCRIBE ROWS TASKS FOR (INCUMBENTS)

PCNTRESPOND=PCNT 'PERCENT RESPONDING';
NUMBRESPOND=N NUMBER RESPONDING'.

SELECT ROWS NEWMODULE (PCNTRESPOND > 70
* AND. PCNTRESPOND < 90 .OR. NUMBRESPOND .EQ. 3)
'MODULE MADE UP OF TASKS T1-T3 a TS'.

END.

The DESCRIBE command in example 8 is generating two database columns.
Column PCNTRESPOND will consist of the percentage of members responding to
each task and column NUMBRESPOND will consist of the number of members
responding to each task.

145

-

SELECT

The values in the two columns will consist of:

PCNTRESPOND NUMBRESPOND

Ti .71.43 5
T2 85.71 6
T3 71.43 5
T4 57.14 4
T5 42.86 3

The SELECT command in example 8 is using a column Boolean expression
consisting of both relational operators and Boolean operators to select task
rows into module NEWMODULE. The effect of the SELECT command is to select
those task rows in which the column PCNTRESPOND is greater than 70 and less
than 90 (T1, T2 and T3) or the column NUMBRESPOND is equal to 3 (T5). Based
on the criteria deftned"n' the SELECT command the selected iAows will be
T1-T3 and T5.

I

146

A.. .. --

SELECT

14

STANDARD

INTRODUCTION

PURPOSE

The STANDARD command standardizes specified rows or columns of the
database to any given mean and standard deviation. For each row gr column
specified, STANDARD will create a new standardized row or column and, if
indicated, store it permanently on the database.

FORM

The general form of the STANDARD command is as follows:

1) The procedure keyword STANDARD.
2) The keyword ROWS or COLUMNS - this keyword alerts the

system that either rows or columns of the database are to
be standardized.

3) A description of which rows or columns of the database
are to be standardized.

4) A group or module designation representing the "length"
or the number of elements that are contained in the
row(s) or column(s) that is being standardized.

5) A user-supplied constant indicating the mean the
standardized values are to take.

6) A user-supplied constant indicating the standard
deviation the standardized values are to take.

7) A new ID. The new ID will have a numeric value, ranging
from 1 to the number of rows or columns specified in 3,
appended to it by the system. The user must be careful
not to specify an ID that will conflict with one previ-
ously defined in the database. The user must also take
care to specify an ID that, when the numeric value is
appended to it by the system, is not longer than 12 char-
acters. If only a single row or column is being stand-
ardized, a numeric value is not appended to the new ID.

9) Optionally, the keyword NOSVA-E. If NOSAVE is specified,
then the new IDs created for this run will not be re-
tained for future use.

10) A remark that will be associated with the new IDs.

EXAMPLE

STANDARD ROWS (HI) FOR INCUMBENTS
MEAN:z50 STD:=10 NEWROW 'NEW STANDARDIZED ROW.

The above STANDARD command syntax is requesting that the database row)
HI be standardized to a mean of 50 and a standard deviation of 10 for
every incumbent on the database. The standardized values of Hi will be

148

/

STANDARD

named NEWROW and this created vector will be permanently added as a new row
on the database.

OUTPUT FROM PROCEDURE

Execution of the STANDARD command produces no printed output.

STANDARDIZATION FORMULA

The equation used by STANDARD for standardization is:

T = S(X -
)

S

Where:

T = Standardized value.
X= Original raw data point.

= Original mean of row/column being standardized.
S = Original standard deviation of row/column being stand-

ardized.
X= User specified constant indicating the mean the new

standardized row/column will take.
S= User specified constant indicating the standard devia-

tion the new standardized row/column will take.

(1

149

_ _ _ _ _ _ _ _ _ _

g4

STANDARD

STANDARD SYNTAX

Refer to the syntax graph of the STANDARD procedure.

STANDARD

The keyword STANDARD identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates whether rows or columns of the
database are to be standardized.

MODULE ROW LIST

A Module Row List (MROWLT) is a list of at least one module or row ID
enclosed in parentheses. Lists of module IDa, system row lists and lists of
row IDs may all occur together in a MROWLT. If the data type designation
following the STANDARD command keyword is ROWS, then aMROWLT must follow.
The MROWLT serves to indicate to the STANDARD procedure which rows of the
database are to be standardized.

CAUTION: All created module IDs appearing in the MROWLT must
have been selected and permanently saved during a
previous execution of the CODAP80 interpreter.
STANDARD cannot process created modules that were
selected in the same run stream.

GROUP COLUMN LIST

A Group Column List (GCOLST) is a list of at least one group or column
ID enclosed in parentheses. Lists of group IDs. system column lists and
lists of column IDs may all occur together in a GCOLST. If the data type
designation following the standard command keyword is COLUMNS, then a GCOLST
must follow. The GCOLST serves to indicate to the STANDARD procedure which
columns of the database are to be standardized.

CAUTION: All created group ID appearing in the GCOLST must
have been selected and permanently saved during a
previous execution of the CODAP0 interpreter.
STANDARD cannot process created groups that were
selected in the same run stream.

FOR

The FOR keyword alerts the STANDARD procedure to expect a following
group or module ID. I

150

Mil

STANDARD

GROUP ID

A group ID is an identified aggregate of database columns. A group ID
following the FOR keyword indicates the columns of the database the rows are
to be standardized across. If the preceeding data type designation was
ROW., than a group ID must follow the FOR keyword.

MODULE ID

A module ID is an identified aggregate of database rows. A module ID
following the FOR keyword indicates the rows of the database the columns are
to be standardized across. If the preceeding data type designation was
COLUMNS, then a module ID must follow the FOR keyword.

MEAN

The keyword MEAN serves to alert STANDARD that the following user
supplied constant represents the mean to which the rows or columns are to be
standardized.

STD

The keyword STD serves to alert STANDARD that the following user
supplied constant represents the standard deviation to which the rows or
columns are to be standardized.

ASSIGNMENT OPERATOR

Either the symbols : or Either of these symbols may be used to
separate the MEAN or STD keywords from their associated user supplied
constant.

I! CONSTANT

A user supplied numeric value, such as '3.14'.

ID

Any valid CODAPS0 ID, supplied by the user. This new ID will have a
number value, ranging from I to the number of rows or columns specified in
the MROWLT or GCOLST, appended to it by the system. If only a single row or
column is being standardized, then a numeric value is not appended to the
ID.

151

5. 151

STANDARD

NOSAVE

If the keyword NOSAVE is specified, any new IDs created will not be
saved for future reference.

REMARK

This is a stilng of up to 240 characters. enclosed in single quotes.
The remark will be associated with the new IDs created. A remark must be
associated with the new IDa.

PERIOD

A period (Y.) must end the STANDARD statement.

152

~----Mr-

STANDARD

STANDARD EXAMPLES

EXAMPLEg 1

STANDARD COLUMNS (G6) FOR SVARS
MEAN:=50 9TD:=Ib STANI
'INCUMBENT COLUMN STANDARDIZED (M=50 S-10) FOR SVARS.

The above STANDARD statement syntax is requesting that each of the
columns defined by the system group ID G6 (G6 is a system cluster group ID
defined by the OGROUP routine when the incumbents were clustered at database
creation time), which is, referring to the Sample Database, every incumbent
column, be standardized to a mean of 50 and a standard deviation of 10
across the rows defined by the system module ID SVARS (S-S5). Seven new
columns will be added to the database (one for each of the seven incumbent
columns) and will be named STANI1-STANI7. The remark INCUMBENT COLUMN
STANDARDIZED (M=50 STD=10) FOR SVARS will be associated with each of the
new columns.

Referring to the Sample Database, the data to be standardized consists
of:

[11 12 13 14 15 16 17

S1 • . . 2 . 2
S2 1 1 2 1 1 3
S3 1 2 2 1 • 3
S4 2 1 2 *2
S5 1 . 1 1 3 .

After standardization, the new columns consist of:

STANI1 STANI2 STANI3 STANI4 STANI5 STANI6 STANI7

Sl • 55.00 57.07
S2 44.23 44.23 55.00 44.23 42.93 50.00
S3 44.23 61.55 55.77 44.23 50.00
S4 61.55 44.25 55.77 55:00
S5 . . 38.45 35.00 61.55

15
153

/

STANDARD

EXAMPLE 2

STANDARD ROWS (H2) FOR INCUMBENTS
MEAN:=50 STD:=10 H2STAN
'ROW H2 STANDARDIZED (M=$O SalO) FOR INCUMBENTS'.

The above STANDARD statement syntax Is requesting that the database row
H2 be standardized to a mean of 50 and a standard deviation of 10 across
every incumbent column in the database. The standardized row will be named
H2STAN and will be permanently stored on the database along with its
associated remark ROW H2 STANDARDIZED (M-50 S-10) FOR INCUMBENTS.

Referring to the Sample Database, the data to be standardized oonsists
of:

L 1 3 ji 5 1 . 17
H2 19 23 . 41 27 53

After standardization, the new row oonsists of:

11 12 13 14 1s 16 17

H2STAN 40.35 43.19 5 55.96 46.03 67.47

154

STANDARD

(4

4 1'* 1' Ii
I

U aS..

I I

I I Ii a
(4

I I

C

155

'A *1

VARBUM Af

INTRODUCTION

PURPOSE

The VARSUM procedure produces frequency counts and percentages of the
distribution of values for specified rows or columns on the database. The
VARSUM procedure is particularly useful when comparing the distribution
of a specified history variable across groups of interest generated from a
cluster operation.

FORM

The general form of the VARSUM command is as follows:

1) The procedure keyword VARSUM.
2) The data type designation ROWS or COLUMNS.
3) A description of the rows or columns upon which

distribution statistics are to be calculated.
4) A description of the aggregate of rows or columns (a

group or module ID) across which distribution statistics
are to be calculated.

5) Options controlling the type of distribution statistic)
calculated (frequencies or percentages - or both) and the
appearance of the output.

EXAMPLE

VARSUM ROWS (Si) FOR (G6) COUNT
HEADING::OSIMPLE EXAMPLE OF THE VARSUM PROCEDURE.

The above example VARS UM command syntax will answer the question, "What
is the frequency distribution of the values of the secondary variable SI
across those incumbents identified by the system group G6?"

OUTPUT FROM PROCEDURE

The VARSUM procedure produces a report showing frequency counts or
percentages (or both) of the distribution of values for specified rows or
columns of the database.

156
p!

-~-.1

I

VARSUM

VARSUM SYNTAX

Refer to the syntax graph of the VARSUM procedure.

VARSUM

The keyword VARSUM identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS designates whether it is to be rows or
columns of the database upon which distribution statistics are to be
calculated.

MODULE ROW LIST

A Module Row List (MROWLT) is a list of at least one module or row ID
enclosed in parentheses. Lists of module IDs, system row lists and lists of
row IDs may all appear together in a MROWLT. In regard to the VARSUM
procedure, the MROWLT identifies the rows of the database upon which
distribution statistics are to be calculated. A MROWLT must be specified if
the data type designation was ROWS.

GROUP COLUMN LIST

A Group Column List (GCOLST) is a list of at least one group or column
ID enclosed in parentheses. Lists of group IDs, system group lists, system
column lists and lists of column IDs may all appear together n a GCOLST.
In regard to the VARSUM procedure, the GCOLST identifies the columns of
the database upon which distribution statistics are to be calculated. A
GCOLST must be specified if the data type designation was COLUMNS.

FORt

The keyword FOR alerts the procedure that the following list of

database row or column aggregates (that is, a list of module or group IDs)
represent tipt part of the database across which distribution statistics are
to be cioumted. If the data type designation was ROWS, then a group list
must follow the FOR keyword. If it was COLUMNS, then a module list must
follow the FOR keyword.

C

A ___ ____j

VARSUM

MODULE LIST

A Module List is a list of at least one module ID enclosed in
parentheses. Each module ID appearing in the module list identifies the
rows of the database across which column distribution statistics are to be
calculated.

GROUP LIST

A Group List is a list of at least one group ID enclosed in
parentheses. Each group ID appearing in the group list identifies the
columns of the database across which row distribution statistics are to be
calculated.

COUNT

Specifying the keyword COUNT signifies that the distribution statis-
tics calculated are to consist of frequency counts.

PERCENT

Specifying the keyword PERCENT signifies that the distribution
statistics calculated are to consist of percentages.

DECODE

At the time the database was initially created (through the use of the
INPSTD database creation routine) the user had the option of associating
descriptive text with the values of a specified row. For example, the user
could have associated the label 'MALE' with a sex value of '1' and
'FEMALE' with a sex value of '2'. If the user specifies DECODE in the
VARSUM syntax, the procedure will substitute the associated label for the
values of the ID for which distribution statistics are being calculated (see
VARSUM example 2). The number of row or column aggregates across which
distribution statistics were calculated that can be displayed across a page
of output is eight. If DECODE Is specified, only six row or column
aggregates can be displayed across a page.

MISSING

The default condition of the VARSUM procedure is not to accumulate
distribution statistics on missing values. If the MISSING keyword is
specified, distribution statistics including missing values will be
generated.

k

158

-I t-

VARSUM

STAT

Specification of the keyword STAT indicates that mean and standard
dev-iation statistics are to be calculated and printed along with the distri-
bution statistics.

HEADING

The keyword HEADING indicates that the following character string(s)
enclosed in single quotes is to serve as a report title.

ASSIGNMENT OPERATOR

Either of the symbols '1= or '::0. Either of these symbols may be used
to separate the HEADING keyword from the character strings serving as a
report title.

CHARACTER STRING

Up to 10 lines of 131 characters each may comprise the character
strings serving as a report title. Each string of up to 131 characters
(representing one title line) must be enclosed in single quotes. The
beginning of a new title line is indicated by a blank and another title line
enclosed in quotes.

For example:

HEADING:'EXAMPLE SHOWING HOW' 'REPORT TITLE LINES'
'ARE CONSTRUCTED FOR THE VARSUM PROCEDURE'.

This example would produce three title lines centered at the top of
VARSUM's output page:

EXAMPLE SHOWING HOW
REPORT TITLE LINES

ARE CONSTRUCTED FOR THE VARSUM PROCEDURE

PERIOD

A period ('.') must end the syntax of the VARSUM procedure.

15S(

i 159

I- " iII I ll

VARSUM,

VARSUM EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATA80 EXECUTE.
VARS'UM ROWS (N3,S4) FOR (G6) COUNT

HEADING:=1VARSUM EXAMPLE 1
'DISTRIBUTION OF S3 & S4 ACROSS ALL INCUMBENTS'.

END.

In the above example, the user is requesting that frequency counts be
calculated on the distribution of values occurring for the rows S3 and S4
across all columns indicated by the system group G6 (G6 is a system group
generated by clustering at database creation time. G6 contains 7 members:
11-17).

EXAMPLE 1
PRINTED OUTPUT

PAGE - 1

STUDY ID - SAMPLEDATA80
VARSUM EXAMPLE 1

DISTRIBUTION OF 53 & S4 ACROSS ALL INCUMBENTS

**** FREQUENCY ****

S - 3 SECONDARY - SHAKE DOWN VISITORS

INTERVAL G - 6

1.00 2
2.00 2
3.00 1

TOTAL COUNTED ABOVE 5
MISSING 2

S - 4 SECONDARY - ESCORT INMATES

INTERVAL G- 6

1.00 1
2.00 3

TOTAL COUNTED ABOVE 4
MISSING 3

160

VARSUM

EXAMPLE 2

BEGIN SAMPLEDATA80 EXECUTE.
SELECT ROWS NEWMOD (S3, S4)

'MODULE CONTAINING ROWS S3 & S4'.
VARSUM ROWS (NEWMOD) FOR (GS,G6)

COUNT PERCENT DECODE MISSING
HEADING: VARSUM EXAMPLE 21
'DISTRIBUTION OF EACH ROW CONTAINED IN MODULE NEWMOD'
'ACROSS COLUMNS IDENTIFIED BY SYSTEM GROUP 05'
'AND THEN ACROSS THOSE COLUMNS IN SYSTEM GROUP G6'.

END.

In the above example, the user is first selecting the rows 53 and S4 to
be n the created module NEWMOD (see the section on the SELECT procedure for
more inforulation). Following that, the user is requesting that the VARSUM
procedure calculate both frequency and percentage statistics for each row
identified by the module ID NEWMOD (rows S3 and S4). The statistics are to
be calculated first across the columns identified by the system cluster
group G5, and then across the columns identified by the system cluster group
G6 (05 and G6 are system groups generated by clustering at database creation
time. Referring to the Sample Database, G5 contains 4 members: columns
14-17; GO contains 7 members: columns 11-7). Decode has been specified
and missing values are to be included in the calculation of distribution
statistics.

161

A~-7 7____ _

VARSUM

EXAMPLE 2
PRINTED OUTPUT .2

PAGE - 1

STUDYID - SAMPLEDATA80 .
VARSUM EXAMPLE"2

DISTRIBUTION OF EACH ROW CONTAINED IN MODULE NEWMOD
ACROSS COLUMNS IDENTIFIED BY SYSTEM GROUP G5

AND THEN ACROSS THOSE COLUMNS IN SYSTEM GROUP G6

"" FREQUENCY *

S - 3 SECONDARY - SHAKE DOWN VISITORS

INTERVAL G - 5 G- 6

2 2
1.00 DO 1 22.00 ASSIST 0 2

3.00 SUPERVISE 1 1

TOTAL COUNTED ABOVE 4 7

PERCENTAGE '*'*

S - 3 SECONDARY - SHAKE DOWN VISITORS
INTERVAL G-5 G-6

50.00 28.57
1.00 DO 25.00 28.57
2.00 ASSIST 0.00 28.57

-- -3.00SUPERVISE --- 25.00 14.29

TOTAL PERCENT 100.00 100.00

162

/f

VARSUM

EXAMPLE 2
PRINTED OUTPUT (continued)

PAGE -2

STUDYID -SAMPLEDATA80

VARSUM EXAMdPLE 2
DISTRIBUTION OF EACH ROW CONTAINED IN MODULE NEWMOD

ACROSS COLUMNS IDENTIFIED BY SYSTEM GROUP G5
AND THEN ACROSS THOSE COLUMNS IN SYSTEM GROUP G6

*S*FREQUENCY **

S - 4 SECONDARY - ESCORT INMATES

INTERVAL G - 5G

.3 3
1:00 DO 0 1
2.00ASSIST 1 3

TOTAL COUNTED ABOVE 4 7

*** PERCENTAGE ****

S - 4 SECONDARY -ESCORT INMATES

INTERVAL G -5 G- -6

75.00 42.96
1.00 DO 0.00 14.29
2.00 ASSIST 25.00 42.86

TOTAL PERCENT 100.00 100.00

163

7. 4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_+- v

VARSUM

EXAMPLE 3

BEGIN SAMPLEDATA80 EXECUTE.
VARSUM COLUMNS (G1) FOR (SVARS) COUNT

HEADING:=VARSUM EXAMPLE 3'
'DISTRIBUTION OF EACH COLUMN CONTAINED IN'
'SYSTEM GROUP G1'
'ACROSS ROWS IDENTIFIED BY SYSTEM MODULE SVARS'.

END.

The above example demonstrates the VARSUM procedure's symmetric
capability. The two previous examples of the VARSUM procedure were
calculating distribution statistics on rows across columns. Example 3 is
requesting that distribution statistic--; calculated on database columns
extending across rows. Specifically, the user is requesting that frequency
counts of the dltuton of values for each of the columns contained in
system group G1 (columns 12 and 13) be calculated across the rows identified
by the system module SVARS (rows S1-55).

EXAMPLE 3
PRINTED OUTPUT

PAGE - 1

STUDY ID - SAMPLEDATAS0
VARSUM EXAMPLE 3

DISTRIBUTION OF EACH COLUMN CONTAINED IN
SYSTEM GROUP G1

ACROSS ROWS IDENTIFIED BY SYSTEM MODULE SVARS

s. FREQUENCY **=

1-2

INTERVAL SVARS

1.0 2
2.0 1

TOTAL COUNTED ABOVE 3
MISSING 2

1-3

INTERVAL SVARS

1.0 1
2.0 2

TOTAL COUNTED ABOVE 3
MISSING 2

1)

164

a--!+= +.. .: +,p + + , + , / ._

VARSUM

E XAM L 4

BEGIN SAMPLEDATA80 EXECUTE.
DESCRIBE ROWS TASKS FOR (G)

G6PCNT :=PCNT
'PERCENT PERFORMING TASKS - G6'.

CREATE COLUMN FOR TASKS
IF G6PCNT .LE. 60 THEN NEWCOLUMN:=1.0
ELSE NEWCOLUMN:=2.0
'G6PCNT <- 60, NEWCOLUMN=l -- ELSE NEWCOLUMN=2'.

VARSUM COLUMNS (NEWCOLUMN) FOR (TASKS) COUNT
HEADING:='VARSUM EXAMPLE 4'

'DISTRIBUTION OF THECOLUMN NEWCOLUMN'
'AS MEASURED ACROSS THE SYSTEM MODULE TASKS'.

END.

The above example is demonstrating how other procedures in CODAPSO may
be used to add rows or columns of summary calculations to the database, and
then have the VARSUM procedure produce a report of the distribution of those
rows or columns.

Initially, the user is requesting that the DESCRIBE procedure generate
a column consisting of the percent of all incumbents performing each task
row. The column generated by DESCRIBE (and named G6PCNT) will be 5 elements
long (one element per task) and will consist of the values:

71.43 85.71 71.43 57.14 42.86

Following that, the user is requestirig that the CREATE procedure
generate another column (named NEWCOLUMN), the values of which to be a
function of the magnitude of the values in column G6PCNT (NEWCOLUMN will
equal 1.00 when G6PCNT is less than or equal to 60, otherwise NEWCOLUMN
will equal 2.00). The column NEWCOLUMN will be 5 elements long (one for
each task row) and will consist of the.values:

2.00 2.00 2.00 1.00 1.00

Last, the user is requesting that the VARSUM procedure calculate
frequency counts of the distribution of values in column NEWCOLUMN as
measured across the rows Identified by the system module TASKS (T1-T5).

(f

185

SMOW

•r

VARSUM

EXAMPLE 4
PRINTED OUTPUT

PAGE-i

STUDY ID - SAMPLEDATA80
VARSUM EXAMPLE 4

DISTRIBUTION OF THE COLUMN NEWCOLUM14
AS MEASURED ACROSS THE SYSTEM MODULE TASKS

** FREQUENCY ****

NEWCOLUMN G6PCNT <x 60, NEWCOLUMN=l -- ELSE NEWCOLUMN=2

INTERVAL TASKS

1.0 2
2.0 3

TOTAL COUNTED ABOVE 5
MISS ING 0

16

166

.. 1... , ,.;:7 .% . ..,. ,,.. _ , ., . ! l '

VARSUM

z cU

L-

300

1671

0

REFERENCES

(I

168 {
~ / I

:~. ~

REFERENCES

Brown, Gary D. System 370 Job Control Language. New York: John Wiley &
Sons, 1977.

Wrd, J.*H., Jr. Hierarchical grouping to optimize'an objective funotion.'
American Statistical Association Journal. 1983, 58, 236-244.

Winer, B .J * Statistical Principles in Experimental Design. New York:
McGraw -iHB 7=.

169

APPENDIX A

SAMPLE CODAPSO PROGRAM

A-i

|I

I

0- #

THIS IS AN EXAMPLE OF A COMPLETE PROGRAM RUN STREAM
IN THE CODAPS0 LANGUAGE. A PROGRAM SUCH AS THIS
WOULD BE SUBMITTED TO THE COMPUTER BY THE USER. A

-# GOOD PRACTICE TO FOLLOW WHEN WRITING CODAPS0 SOURCE #
PROGRAMS IS TO DOCUMENT WHAT THE PROGRAM IS DOING
THROUGH THE LIBERAL USE OF COMMENTS. ANY CHARACTER
STRING OCCURRING BETWEEN TWO POUND SIGNS IS
INTERPRETED BY THE CODAPSO SYSTEM AS A COMMENT.
COMMENTS ARE NOT EXECUTED, BUT ARE PRINTED OUT
ALONG WITH THE PROGRAM STATEMENTS. FUTURE USERS
WILL THEN BE ABLE TO LOOK AT THE PROGRAM AND TELL
WHAT IT WAS DOING,
--

THE BEGIN STATEMENT IS THE FIRST EXECUTABLE #.
STATEMENT IN THE CODAP80 LANGUAGE. THIS STATEMENT
ALERTS THE SYSTEM THAT A CODAP80 SOURCE LANGUAGE
0 PROGRAM FOLLOWS. SAMPLEDATAS0 IS THE STUDY ID #

" ASSOCIATED WITH THE DATABASE BEING ACCESSED. THE #
STUDY ID GIVEN IN THIS STATEMENT WILL BE CHECKED
AGAINST THE ONE STORED ON THE DATABASE (WHICH WAS
ASSIGNED AT INPUT STANDARD TIME) AND, IF THEY
MATCH, PROCESSING WILL CONTINUE. THE KEYWORD
EXECUTE INSTRUCTS THE SYSTEM THAT IF NO ERRORS
-ARE FOUND THE FOLLOWING STATEMENTS ARE TO BE 0
EXECUTED. HAD "EXECUTE" BEEN OMITTED, ONLY SYNTAX # "
ANALYSIS WOULD HAVE BEEN PERFORMED. 0
--

BEGIN SAMPLEDATA80 EXECUTE.
--
ONE OF THE FIRST OPERATIONS IN A STUDY IS TO DEFINE
THE DATABASE SUBSETS OF INTEREST. THE FOLLOWING
FIVE SELECT STATEMENTS ARE ASSIGNING TASKS (ROWS)
TO MODULES (DUTYA DUTYB) AND INCUMBENTS (COLUMNS)
TO GROUPS (MALES, FEMALES AND OLDERNOTING2). THE
EFFECT OF THE FIFTH SELECT STATEMENT:
#
COLUMNS OLDERNOTING2 (H2.GT.30 & NOT IN G2)
'INCUMBENTS OLDER THAN 30 AND NOT IN CLUSTER G2'
#
IS TO ASSIGN ONE INCUMBENT (16) TO GROUP ID 0
OLDERNOTING2. THIS INCUMBENT (16) IS THE ONLY ONE
IN THE SAMPLE DATABASE THAT MEETS THE CONDITION OF
BEING OLDER THAN 30 (HISTORY VARIABLE 2 IS AGE--SEE
SAMPLE DATABASE) WHILE AT THE SAME TIME NOT
BELONGING TO CLUSTER G2. THE REMARK 'INCUMBENTS

-# OLDER THAN 30 AND NOT IN CLUSTER G2' WILL BE STORED #
ON THE DATABASE ALONG WITH ITS ASSOCIATED GROUP ID
(OLDERNOTING2) FOR LATER REFERENCE.

A
A-2

/7/

NOTICE THAT IT WAS NOT NECESSARY TO REPEAT THE
SELECT PROCEDURE KEYWORD BECAUSE THE FIVE COMMANDS
OCCUR TOGETHER AND, EXCEPT FOR THE LAST IN THE
SERIES, ARE TERMINATED BY A SEMICOLON C;). ID'S
MAY BE UP TO 12 CHARACTERS LONG.
------------------ ------------------------------------

SELECT ROWS DUTYA (T1-T3) 'SHAKE DOWN TASKS';
ROWS DUTYB (T4-T) 'OTHER TASKS';
COLUMNS MALES (Hl=l) 'INCUMBENTS OF THE MALE SEX';
COLUMNS FEMALES (Hl=2)

'INCUMBENTS OF THE FEMALE SEX';
COLUMNS OLDERNOTING2 (H2.GT.30 & NOT IN G2)

'INCUMBENTS OLDER THAN 30 AND NOT IN CLUSTER G2'.
--
NOW THAT THOSE AREAS OF INTEREST IN THE DATABASE
HAVE BEEN IDENTIFIED AND LABELED, IT IS POSSIBLE TO"
DIRECT PROCESSING AT THOSE AREAS.
THE FOLLOWING DESCRIBE COMMANDS WILL GENERATE A
TOTAL OF FIVE NEW COLUMNS TO BE STORED ON THE
f DATABASE. THE FIRST DESCRIBE STATEMENT (IT IS #
REALLY THREE DESCRIBE STATEMENTS, BUT SINCE THE
SAME AREA OF THE DATABASE IS BEING ACCESSED CODING *
CAN BE REDUCED THROUGH THE USE OF THE TERMINATING
SEMICOLON) IS GENERATING THREE COLUMNS: PERCENT
PERFORMING PER TASK. AVERAGE PER TASK FOR THOSE
PERFORMING AND AVERAGE PER TASK FOR THOSE
PERFORMING OR NOT. THE THREE COLUMNS ARE
RESPECTIVELY BEING ASSIGNED THE ID'S G5PCNT, G5AVGP
AND GSAVGA. THE CALCULATIONS WILL BE PERFORMED
ACROSS THE COLUMNS ASSOCIATED WITH THE CLUSTER G5
(14-17). EACH OF THESE THREE COLUMNS WILL CONTAIN
5 VALUES (ONE FOR EACH TASK ON THE SAMPLE
DATABASE--TASKS, USED IN THE STATEMENT, IS A
CODAP80 SYSTEM MODULE ASSOCIATED WITH ALL THE TASKS
IN THE STUDY).

THE LAST TWO DESCRIBE STATEMENTS ARE CALCULATING
PERCENT PERFORMING TASKS ACROSS THOSE COLUMNS
ASSOCIATED WITH THE CREATED GROUP ID'S MALES (12,
14-17) AND FEMALES (11, 13). THE TWO GENERATED
COLUMNS ARE ASSIGNED THE ID'S MALESPCNT AND
FEMALESPCNT.

ALL FIVE GENERATED COLUMNS WILL BE SAVED ON THE
PERMANENT DATABASE ALONG WITH THEIR ASSOCIATED
REMARKS (HAD THE NOSAVE KEYWORD APPEARED, THE
ASSOCIATED COLUMNS WOULD ONLY BE KEPT FOR THE
DURATION OF THIS RON).

A-3

171 J_

.1

THE FOLLOWING DESCRIBE COMMANDS ARE PERFORMING
THEIR CALCULATIONS ON TASKS (ROWS) ACROSS
INCUMBENTS (COLUMNS). THERE ARE NO RESTRICTIONS ON
WHICH ROWS OF THE DATABASE THE DESCRIBE COMMAND MAY
PROCESS. THESE VERY SAME CALCULATIONS COULD JUST
AS WELL HA"7E BEEN: AIMED AT HISTORY INFORMATION, OR
ANY OTHER AGGREGATE OF ROWS SELECTED AND LABELED BY
THE SELECT PROCEDURE. DESCRIBE MAY ALSO PROCESS
COLUMNS ACROSS ROWS. THIS FEATURE GIVES IT THE
CAPABILITY OF SYMMETRY.
-- - - - - -- - - -

DESCRIBE ROWS TASKS FOR (G5)
G5PCNT := PCNT 'PERCENT PERFORMING TASKS-G5';
G5AVGP := AVGP

'AVERAGE PERCENT TIME SPENT (PERFORMING)-G5';
G5AVGA := AVGA 'AVERAGE PERCENT TIME SPENT (ALL)--G5'.

DESCRIBE ROWS TASKS FOR (MALES)
MALESPCNT := PCNT 'PERCENT PERFORMING TASKS--MALES'.

DESCRIBE ROWS TASKS FOR (FEMALES)
FEMALESPCNT := PCNT

'PERCENT PERFORMING TASKS--FEMALES'.

A VALUABLE STATISTIC IN JOB ANALYSIS IS THE
DIFFERENCE IN PERCENT PERFORMING ON TASKS BETWEEN
0 INCUMBENT AGGREGATES OF INTEREST. TO CALCULATE #
SUCH A DIFFERENCE STATISTIC, THE USER WOULD EXECUTE
THE CREATE PROCEDURE. IN THE ABOVE DESCRIBE.
EXAMPLES, TWO PERCENT PERFORMING COLUMNS WERE
GENERATED-MALESPCNT a FEMALESPCNT. TO CALCULATE
THE DIFFERENCE BETWEEN THOSE TWO COLUMNS. BUT ONLY
FOR TASKS 1-3, YOU WOULD EXECUTE THE FOLLOWING
CREATE COMMAND. #O ------------ --------

CREATE COLUMN DUTYA DIFFSEX := MALESPCNT-FEMALESPCNT
'DIFFERENCE IN PERCENT PERFORMING BETWEEN SEXES'.

THE ABOVE CREATE COMMAND HAS 'CREATED' A NEW
COLUMN. THE NEW COLUMN HAS BEEN GIVEN THE ID
DIFFSEX AND IT, ALONG WITH ITS ASSOCIATED REMARK,
HAS BEEN SAVED ON THE PERMANENT DATABASE. DIFFSEX
WILL HAVE THREE VALUES IN IT, ONE FOR EVERY TASK
ASSOCIATED WITH THE MODULE ID DUTYA (DUTYA WAS
FORMED BY AN EARLIER SELECT COMMAND, AND WAS
ASSIGNED TASKS 1-3).
#
* THE ABOVE EXAMPLE OF THE CREATE PROCEDURE IS ONE OF #
THE SIMPLEST. CREATE IS A VERY POWERFUL PROCEDURE,
* AND ALSO HAS SYMMETRIC CAPABILITY. #
##

)

A-4

1 7-3

AT THIS POINT, THE JOB ANALYST MAY WISH TO SEE SOME
OF THE DATA THAT HAS BEEN GENERATED. AT PRESENT,
THE GENERATED DATA IS RESIDING ON THE DATABASE.
MANY MORE CALCULATIONS COULD BE PERFORMED ON THE
DATABASE, AND MANY MORE PROCEDURES COULD BE
EXECUTED.

TO PRODUCE REPORTS OF DATA RESIDING ON THE
DATABASE, THE PRINT PROCEDURE IS EXECUTED.
THE FIRST PRINT COMMAND WILL PRODUCE A: REPORT
* SIMILAR TO THAT PRODUCED BY THE PRTVAR PROGRAM IN #
THE IBM EXPORT VERSION OF CODAP.

* -- - - - -- - - - -#-

PRINT COLUMNS (G6) NOREMARKS / ROWS (HVARS)
HEADING :- 'EXAMPLE 1 OF PRINT'

'A PRTVAlI-LIKE REPORT'.# #
EXAMPLE 1 OF PRINT WILL PRODUCE A REPORT WITH
INCUMBENTS DOWN THE VERTICAL AXIS AND ALL HISTORY
* INFORMATION ACROSS THE HORIZONTAL AXIS. #
* #

0 THE NEXT EXAMPLE OF PRINT WILL PRODUCE A REPORT #
SIMILAR TO THAT OF THE JOBDEC PROGRAM IN THE IBM
VERSION OF CODAP. THE REPORT WILL BE IN TASK
INVENTORY ORDER.
--

PRINT. ROWS (TASKS) / COLUMNS (GSPCNT G5AVGP G5AVGA)
CUM (G5AVGA)
HEADING := 'EXAMPLE 2 OF PRINT'

'REPORT SIMILAR TO THAT OF IBM CODAP JOBDEC'
'AN ACCUMULATION OF G5AVGA HAS BEEN REQUESTED'
'OUTPUT IS IN TASK INVENTORY ORDER'.

THE THIRD EXAMPLE OF PRINT WILL PRODUCE A REPORT
SIMILAR TO THAT GENERATED ABOVE, EXCEPT THAT IT
WILL BE BROKEN-DOWN INTO MODULES (DUTYA & DUTYB).
THE TASKS WITHIN THE MODULES WILL BE SORTED IN
DESCENDING G5AVGA ORDER.

PRINT ROWS (DUTYA DUTYB) / COLUMNS (G5PCNl G5AVGP
GSAVGA) SORT DESCENDING BY (G5AVGA)

HEADING := 'EXAMLPLE 3 OF PRINT'
'REPORT IS BROKEN-DOWN INTO MODULES'
'TASKS WITHIN MODULES IN DESCENDING G5AVGA ORDER'.

THE LAST (FOURT PRINT EXAMPLE WILL PRODUCE A
GROUP DIFFERENCE DESCRIPTION IN TASK INVENTORY
0 ORDER. #

£ A-
A-Sj

' /7j

PRINT ROWS (TASKS) / COLUMNS (MALESPCNT FEMALESPCNT
DIFFSEX)

HEADING := 'EXAMPLE 4 OF PRINTI

'GROUP DIFFERENCE DESCRIPTION'
'REPORT IS IN TASK INVENTORY ORDER'.

A #

THE FOURTH PRINT EXAMPLE. WILL GIVE AN IDEA OF HOW
MISSING VALUES ARE HANDLED IN THE CODAPS0 SYSTEM.
THIS PRINT IS REQUESTING THAT ALL THE TASK VALUES
OF MALESPCNT, FEMALESPCNT AND DIFFSEX BE PRINTED
(TASKS DOWN THE VERTICAL AXIS-THE THREE COLUMNS
ACROSS THE HORIZONTAL AXIS). THERE IS A VALUE OF
MALESPCNT AND FEMALESPCNT FOR EVERY TASK VALUE, BUT
DIFFSEX WILL ONLY HAVE VALUES FOR TASKS 1-3
(DIFFSEX WAS 'CREATED' BY THE CREATE PROCEPURE-BUT
ONLY.FOR THOSE TASKS ASSOCIATED WITH THE MODULE ID
DUTYA).

S# THE END STATEMENT MUST TERMINATE ALLICODAPS0 SOURCE #

LANGUAGE PROGRAMS.

END.

0

A-6

"T~rik

.-

PAGE
STUDY ID- SAMPLEDATA8O AE

EXAMPLE 1 OF PRINT
A PRTVAR-LIKE REPORT

H-i1 SEX
H -2 AGE
H - 3 YEARS ON JOB
H - 4 INCUMBENT ID

H-I1 H-2 H-3 H-4

G- -

I-1 2.00 19.00 1.00 1.00I - 2 1.00 23.00 2.00 5.00
I - 3 2.00 .11.00 7.001 - 4 1.00 41.00 19.00 2.00
1 - 5 1.00 27.00 3.00 4.001-6 1.00 53.00 30.00 6.001- 7 1.00 .16.00 3.00

A-7

PAGE -i

STUDY ID - SAMPLEDATA80
EXAMPLE 2 OF PRINT

REPORT SIMILAR TO THAT OF IBM CODAP JOBDEC
AN ACCUMULATION OF G5AVGA HAS BEEN REQUESTED

OUTPUT IS IN TASK INVENTORY ORDER

G5PCNT PERCENT PERFORMING TASKS-G5
GSAVGP AVERAGE PERCENT TIME SPENT (PERFORMING)--G5
GSAVGA AVERAGE PERCENT TIME SPENT (ALL)-G5
GSAVGA AVERAGE PERCENT TIME SPENT (ALL)-G5

ACCUMULATE
G5PCNT G5AVGP G5AVGA G5AVGA

TASKS

T - 1 SUBDUE VIOLENT INMATES 75.00 23.67 17.75 17.75
T - 2 SHAKE DOWN INMATES 100.00 43.75 43.75 61.50
T - 3 SHAKE DOWN VISITORS 50.00 37.50 18.75 80.25
T - 4 ESCORT INMATES 25.00 22.00 5.50 85.75
T - 5 TESTIFY IN COURT 50.00 28.50 14.25 100.00

A-8 I)

" - -.. .., , -r ,. . . "" " -.. .. " '-- .I.' ' . "

.- , , ,. ,

I

i PAGE-i1

STUDY ID - SAMPLEDATAS0

EXAMPLE 3 OF PRINT
REPORT IS BROKEN-DOWN INTO MODULES

TASKS WITHIN MODULES IN DESCENDING G5AVGA ORDER

G5PCNT PERCENT PERFORMING TASKS-G5
G5AVGP AVERAGE PERCENT TIME SPENT (PERFORMING)--G5
G5AVGA AVERAGE PERCENT TIME SPENT (ALL)-G5

G5PCNT G5AVGP G5AVGA

DUTYA SHAKE DOWN TASKS

T - 2 SHAKE DOWN INMATES 100.00 43.75 43.75
T - 3 SHAKE DOWN VISITORS 50.00 37.50 18.75
T - 1 SUBDUE VIOLENT INMATES 75.00 23.67 17.75

PAGE-2
STUDY ID - SAMPLEDATA80

EXAMPLE 3 OF PRINT
REPORT IS BROKEN-DOWN INTO MODULES

TASKS WITHIN MODULES IN DESCENDING G5AVGA ORDER

G5PCNT PERCENT PERFORMING TASKS--G5
G5AVGP AVERAGE PERCENT TIME SPENT (PERFORMING)--G5
G5AVGA AVERAGE PERCENT TIME SPENT (ALL)--G5

G5PCNT G5AVGP G5AVGA

DUTYB OTHER TASKS

T - 5 TESTIFY IN COURT 50.00 28.50 14.25

T - 4 ESCORT INMATES 25.00 22.00 5.50

(
9I

A-9

S"

PAGE- 1
STUDY ID - SAMPLEDATA80

EXAMPLE 4 OF PRINT
GROUP DIFFERENCE DESCRIPTION

REPORT IS IN TASK INVENTORY ORDER

HALESPCNT PERCENT PERFORMING TASKS-MALES.
FEMALESPCNT PERCENT PERFORMING TASKS-FEMALES
DIFFSEX DIFFERENCE IN PERCENT PERFORMING BETWEEN SEXES

MALESPCNT FEMALESPCNT DIFFSEX

TASKS

T 1 SUBDUE VIOLENT INMATES 80.00 50.00. ' 30.00
T - 2 SHAKE DOWN INMATES 100.00 50.00 50.00
T - 3 SHAKE DOWN VISITORS 60.00 100.00 - 40.00
T - 4 ESCORT INMATES 40.00 100.00
T - 5 TESTIFY IN COURT 40.00 50.00

I

A-10

_q7

tW4,

_
a~~v

I
i

ii...
.1

APPZNDIX B

OVRIW SIMILARITY FORMULAE

(

J.

II

I, ____

1 5-1

I

OVERLAP SIMILARITY FORMULAE

EUCLIDEAN DISTANCEin1/

DISTANCE= Z X-yE

SQUARED EUCLIDEAN DISTANCE

i=nDSQUARE= (Xi-y

ABiSOLUTE OVERLAP

i=n1OVL= Minimum (Xi, Y1)

BINARY

Nonzero Elewnente in
BINARY Common Between X and Y

Nonzero + Nonzero #A Nonzero Elements in
X Elements Y Elements Common Between X and Y

FORMULAE SYMBOL NOTATION

The symbols X and Y represent the data vectors between which similarity
is being calculated. X j and Yj represent the ith elements of data vectors X
and Y, respectively. The symbol n represents the number of elements in dataii vectors X or Y.

B-2

li-

APPENDIX C

FORTRAN FO PROC
g COMPILE. LINK EDIT AND GO PROCEDURE

1 FOR THE 01 FORTRAN COMPILER

C-1

FORTRAN PG PROC
COMPILE, LINK EDIT AND GO PROCEDURE

FOR THE Gil FORTRAN COMPILER

//G EXEC PG.I EYFRT, REG IoI192K(
//SYSPRINT 0D SYSOUrUA
//SYSPtNCH 00 SYSOUlaB
//SYSLIN 00 DSNAE4LOAOSET,DISP-uO,PASS) ,UNIT-SYSSQ,

II SPACE.(8O,(200,i0O),RLSE),oCs~ucLSIZE-8o

//1KED EXEC PGM4IEWL,REGON12KPA4.cXRE,LET,1sr)
//SYSLIB D0 OSNAME-SYSl.F0RTLIB,OISPwSHR
//SYSLGO W0 DSNAMEL&GOSETCMAIN) ,DISP-(NEW,PASS) ,UNIT.SYSO)A,

II SPAC~(1024,(20,10, I),RLSE) ,0C9-eLKSBZE.1024
//SYSPRINT 00 SYSOUTOA
//SYSUTI 00 DSN4Ea&SYSUT,UNITSYSDA,SPACuci24,c20,10) ,RLSE),

II 0O96LSIZE01024
//SYSLIN DO OSNAME-&LOADSET,0I SP.(OLD,OELETE)

1/ 00 00*4AME-SYSIN

//GO EXEC PGQ4.LKE.SYSLMCO

C-2

APPENDIX D

NEW CODAPSO FEATURES

D-1

* ____________________-7_

e

NEW CODAPSO FEATURES

The 83.1 release of CODAPS0 includes many new features. Below is a
list of changes and additions, including new system features, a new proce-
dure and enhancements to existing programs or procedures.

System Features

Core memory requirements for the CODAPS0 interpreter have been reduced
to allow its execution in under 820K.

Mass storage requirements for the DECODE file have been reduced by

90%.

A thru operator may now be used to connect created IDs (e.g.,CREATEDIDI-CREATEDID15).

The assignment operators ":=" and =", may now be used inter-
changably.

New Procedure

A new procedure (named RELY) has been added to the CODAP80 inter-
preter. The procedure calculates inter and intra rater reliabilities on
rows or columns of the database.

Database Creation Enhancements

The INPSTD program of the database creation phase of the CODAP80
system allows new ays the input data may be handled. The user has the
option of not relativizing task information to a percentage scale. The user
also has the option of allowing INPSTD to zero-fill any data that is not
right justified. Real numbers may now be read with the format fields
specification cards.

The OGROUP program of the database creation phase of the CODAPS0

system now allows the user to print the overlap matrix produced during
incumbent clustering.

Enhancements to Existing Procedures

PRINT - the PRINT .procedure is significantly more efficient, and nbw
provides users with format control over the values that are printed. Two
new keywords (NOSKIP and NORESET) have been added to make more efficient
use of paper and control how values are accumulated.

VARSUM - if the user specifies both the COUNT and PERCENT keywords of)
this procedure, execution time is reduced by approximately 50% of that found
with using a similar command In the 82.1 release of CODAPS0. Column

D-2

,J39

headings are now automatically printed at the top of a new page when an
interval needs to be continued. A new keyword (STAT) has been added to
provide mean and standard deviation calculations on distribution
statistics.

y

tI

(-

D-3

... -q

